12. Verify Green's theorem in the plane for

 $\oint_C \{(x^2 + xy)dx + xdy\}, \text{ where C is the curve enclosing the region bounded by } y = x^2 \text{ and } y = x.$ [10]

BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING (EVENING) EXAMINATION, 2017

(1st Year, 1st Semester)

MATHEMATICS - VM (OLD)

Time : Three hours

Full Marks: 100

Answer any ten questions.

- 1. a) Define linearly dependent and independent set of vectors of a vector space V over the field F.
 - b) Prove that the set of vectors $\{(2, 1, 1), (1, 2, 2), (1, 1, 1)\}$ is linearly dependent in \mathbb{R}^3 . [5+5]
- 2. a) Define linear span and basis of a vector space.
 - b) Prove that the set $S = \{(1,0,1), (0,1,1), (1,1,0)\}$ is a basis of \mathbb{R}^3 . [5+5]
- 3. a) Show that the function T: V₃(ℝ) → V₂(ℝ) defined by T(a,b,c) = (a,b) ∀ a,b,c ∈ ℝ is a linear transformation from V₃(ℝ) into V₂(ℝ).
 - b) If α,β are vectors in an inner product space V, then prove that

$$\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|.$$
 [5+5]

[Turn over

- 4. a) Show that the mapping $T: V_3(\mathbb{R}) \to V_2(\mathbb{R})$ defined as $T(a_1, a_2, a_3) = (3a_1 - 2a_2 + a_3, a_1 - 3a_2 - 2a_3)$ $\forall a_1, a_2, a_3 \in \mathbb{R}$ is a linear transformation from $V_3(\mathbb{R})$ into $V_2(\mathbb{R})$.
 - b) In an inner product space V(F), prove that $|(\alpha + \beta)| \le ||\alpha|| \cdot ||\beta||.$ [5+5]

5. a) If
$$\vec{r} = 3t\hat{i} + 3t^2\hat{j} + 2t^3\hat{k}$$
, then find $\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}$.
b) If $\vec{r} = (5+3t)\hat{i} + (3-2t)\hat{j} + (4+t-16t^2)\hat{k}$, then show
that $\frac{d^2\vec{r}}{dt^2} + 32\hat{k} = \vec{0}$. [5+5]

- 6. a) Find the curvature k of the space curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$.
 - b) If $\phi(x, y, z) = 6x^3y^2z$, then find $\nabla \cdot \nabla \phi$ (or div grad ϕ). [5+5]
- 7. a) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$, then prove that $\forall^2 \left(\frac{1}{r}\right) = 0$.
 - b) Prove that $\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) \nabla^2 \vec{F}$. [5+5]

8. a) Find the directional derivative of $\phi = xy^2z - 4xz^2$ at the point (2, 1, -1) in the direction $(2\hat{i} - 2\hat{j} + \hat{k})$.

b) Evaluate
$$\int_{1}^{2} \left(\vec{r} \times \frac{d^2 \vec{r}}{dt^2}\right) dt$$
, where $\vec{r} = 2t^2 \hat{i} + t \hat{j} - 3t^2 \hat{k}$.
[5+5]

- 9. a) If $\vec{F} = 3xy \hat{i} y^2 \hat{j}$, then evaluate $\int_C \vec{F} \cdot d\vec{r}$, where C is the curve in the xy-plane, given by $y = 2x^2$ from the point (0, 0) to (1, 2).
 - b) Evaluate the surface integral $\iint_{S} (yz \,\hat{i} + zx \,\hat{j} + xy \,\hat{k}) \cdot d\vec{S},$

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant. [5+5]

- 10. Verify Stoke's theorem for $\vec{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. [10]
- 11. Use divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$, where

 $\vec{F} = 3xz\hat{i} + y^2\hat{j} - 3yz\hat{k}$ and S is the surface of the cube bounded by x = 0, y = 0, z = 0, x = 1, y = 1, z = 1. [10]

[Turn over