12. Verify Green's theorem in the plane for $\oint_{C}\left\{\left(x^{2}+x y\right) d x+x d y\right\}$, where C is the curve enclosing the region bounded by $y=x^{2}$ and $y=x$. [10]

Bachelor of Engineering in Mechanical Engineering (Evening) Examination, 2017

(1st Year, 1st Semester)

Mathematics - VM (Old)

Time : Three hours
Full Marks: 100
Answer any ten questions.

1. a) Define linearly dependent and independent set of vectors of a vector space V over the field F .
b) Prove that the set of vectors $\{(2,1,1),(1,2,2),(1,1,1)\}$ is linearly dependent in \mathbb{R}^{3}.
2. a) Define linear span and basis of a vector space.
b) Prove that the set $\mathrm{S}=\{(1,0,1),(0,1,1),(1,1,0)\}$ is a basis of \mathbb{R}^{3}.
[5+5]
3. a) Show that the function $T: V_{3}(\mathbb{R}) \rightarrow V_{2}(\mathbb{R})$ defined by $\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\mathrm{a}, \mathrm{b}) \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}$ is a linear transformation from $V_{3}(\mathbb{R})$ into $V_{2}(\mathbb{R})$.
b) If α, β are vectors in an inner product space V , then prove that

$$
\begin{equation*}
\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\| . \tag{5+5}
\end{equation*}
$$

4. a) Show that the mapping $T: V_{3}(\mathbb{R}) \rightarrow V_{2}(\mathbb{R})$ defined as $\mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)=\left(3 \mathrm{a}_{1}-2 \mathrm{a}_{2}+\mathrm{a}_{3}, \mathrm{a}_{1}-3 \mathrm{a}_{2}-2 \mathrm{a}_{3}\right)$
$\forall \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \in \mathbb{R}$ is a linear transformation from $\mathrm{V}_{3}(\mathbb{R})$ into $\mathrm{V}_{2}(\mathbb{R})$.
b) In an inner product space $\mathrm{V}(\mathrm{F})$, prove that $|(\alpha+\beta)| \leq\|\alpha\| \cdot\|\beta\|$.
[5+5]
5. a) If $\overrightarrow{\mathrm{r}}=3 \mathrm{t} \hat{\mathrm{i}}+3 \mathrm{t}^{2} \hat{j}+2 \mathrm{t}^{3} \hat{k}$, then find $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}$.
b) If $\overrightarrow{\mathrm{r}}=(5+3 \mathrm{t}) \hat{\mathrm{i}}+(3-2 \mathrm{t}) \hat{\mathrm{j}}+\left(4+\mathrm{t}-16 \mathrm{t}^{2}\right) \hat{\mathrm{k}}$, then show that $\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}+32 \hat{\mathrm{k}}=\overrightarrow{0}$.
6. a) Find the curvature k of the space curve $x=t, y=t^{2}$, $\mathrm{z}=\frac{2}{3} \mathrm{t}^{3}$.
b) If $\phi(x, y, z)=6 x^{3} y^{2} z$, then find $\nabla \cdot \nabla \phi(\operatorname{ordiv} \operatorname{grad} \phi)$.
7. a) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$, then prove that $\forall^{2}\left(\frac{1}{\mathrm{r}}\right)=0$.
b) Prove that $\nabla \times(\nabla \times \overrightarrow{\mathrm{F}})=\nabla(\nabla \cdot \overrightarrow{\mathrm{F}})-\nabla^{2} \overrightarrow{\mathrm{~F}}$.
8. a) Find the directional derivative of $\phi=x y^{2} z-4 x z^{2}$ at the point $(2,1,-1)$ in the direction $(2 \hat{i}-2 \hat{j}+\hat{k})$.
b) Evaluate $\int_{1}^{2}\left(\overrightarrow{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}\right) \mathrm{dt}$, where $\overrightarrow{\mathrm{r}}=2 \mathrm{t}^{2} \hat{\mathrm{i}}+\hat{\mathrm{t}}-3 \mathrm{t}^{2} \hat{\mathrm{k}}$.
9. a) If $\overrightarrow{\mathrm{F}}=3 x y \hat{\mathrm{i}}-y^{2} \hat{j}$, then evaluate $\int_{C} \overrightarrow{\mathrm{~F}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}}$, where C is the curve in the $x y-p l a n e$, given by $y=2 x^{2}$ from the point $(0,0)$ to $(1,2)$.
b) Evaluate the surface integral $\iint_{S}(y z \hat{i}+z x \hat{j}+x y \hat{k}) \cdot d \vec{S}$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first octant.
10. Verify Stoke's theorem for $\overrightarrow{\mathrm{F}}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
11. Use divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$, where $\overrightarrow{\mathrm{F}}=3 x z \hat{i}+y^{2} \hat{j}-3 y z \hat{k}$ and S is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$. [10]
