Ex/ME/MATH/5/T/121/2017

B.Mechanical(Evening) Examination, 2017

(1ST YR, 2ND SEM) MATHEMATICS

PAPER - IV
Full Marks : 100
Time: Three hours

Part-I.
Answer any four questions
$12.5 \times 4=50$
1.(a) Define Mode. State it advantages and disadvantages.
(b) From the following distribution of scores calculate the mode.

Scores: $\quad 50-59.60-69 \quad 70-79 \quad 80-89 \quad 90-99 \quad 100-109$
$\begin{array}{llllllll}\text { Frequency: } & 6 & 20 & 40 & 50 & 30 & 6\end{array}$
2.(a) Define Mean. State it advantages and disadvantages. Also describe it uses.
(b) Find the arithmetic mean from the frequency distribution.

Weight in kg.: $\quad \begin{array}{llllll}50 & 55 & 60 & 65 & 70\end{array}$
No. of men: $\quad \begin{array}{llllll}15 & 20 & 25 & 30 & 10\end{array}$
3. What is standard deviation of a set of observations? From the following distribution of scores, calculate standard deviation :

Scores: $\quad 6-10 \quad 11-15 \quad 16-20 \quad 21-25 \quad 26-30$

| Frequency: | 4 | 6 | 20 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4. State the axioms of probability.

If A and B are two events which may or may not be mutually exclusive, then prove that

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

5. (a) Define independent events. Let A and B are two independent events. Show that A^{c} and B^{c} are also independent.
(b) If A and B are two events in a sample space S such that

$$
P(A)=0.3, P\left(B^{c}\right)=0.4, P(A \cup B)=0.8
$$

Find
(i) $P(A \cap B), \quad$ (ii) $P\left(A^{c} \cap B^{c}\right), \quad$ (iii) $P\left(A^{c} \cup B^{c}\right)$
[A^{c} is complement of A]

Part - II

Answer any four questions
 $12.5 \times 4=50$

1. (a) Express

$$
\left[\begin{array}{ccc}
2 & 3 & -3 \\
4 & 5 & 6 \\
-5 & 8 & 9
\end{array}\right]
$$

as the sum of a symmetric and a skew symmetric matrix.
(b) Define orthogonal matrix. If A is an orthogonal matrix, show that $|A|= \pm 1$.
2. Find an orthogonal matrix which diagonalize the matrix

$$
A=\left[\begin{array}{ccc}
6 & 4 & -2 \\
4 & 12 & -4 \\
-2 & -4 & 13
\end{array}\right]
$$

Also, Diagonalise A.
3. What do you mean by subspace of a vector space? State the necessary and sufficient condition for a non empty subset W of a vector space $V(F)$ be a subspace of V. Give an example of subspace. Show that intersection of two subspaces is also a subspace.
4. Define basis of a vector space.

Let $S=\{(x, y, z) / 2 x-y-z=0\}$. Show that S is a subspace. Find also a basis for S.
5. What do you mean by inner product space? Define norm of a vector. Show that an orthogonal set of non null vectors in an inner product space V is linearly independent.
3. What is standard deviation of a set of observations? From the following distribution of scores, calculate standard deviation :

Scores: $\quad 6-10 \quad 11-15 \quad 16-20 \quad 21-25 \quad 26-30$

| Frequency: | 4 | 6 | 20 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4. State the axioms of probability.

If A and B are two events which may or may not be mutually exclusive, then prove that

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

5. (a) Define independent events. Let A and B are two independent events. Show that A^{c} and B^{c} are also independent.
(b) If A and B are two events in a sample space S such that

$$
P(A)=0.3, P\left(B^{c}\right)=0.4, P(A \cup B)=0.8
$$

Find
(i) $P(A \cap B), \quad$ (ii) $P\left(A^{c} \cap B^{c}\right), \quad$ (iii) $P\left(A^{c} \cup B^{c}\right)$
[A^{c} is complement of A]

