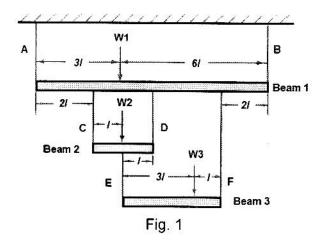
B. MECH. ENGG. 4TH YEAR 1ST SEM. SUPPLE EXAMINATION, 2017

MACHINE DESIGN IV

Time: 3 hours


Full Marks: 100

(Answer any five) (Assume data if required)

- 1. a) Find the maximum of the function $f(x) = 2x_1 + x_2 + 10$ subject to $g(x) = x_1 + 2x_2^2 = 3$ using the Lagrange Multiplier method. Also find the effect of changing the right side of the constraint by 2 units on the optimum value of f.
 - b) Define concave and convex functions.

12+8

2. a) A scaffolding system shown in fig. 1 consists of three beams and six ropes as shown. Formulate the problem of finding the maximum external load that can be supported by the system. Each of the top ropes A and B can carry a load of T₁, each of the middle ropes C and D can carry a load of T₂, and each of the bottom ropes E and F can carry a load of T₃. Assume that weights of the beams 1, 2, and 3 are ω₁, ω₂, and ω₃ respectively, and the weights of the ropes are negligible.

b) What are the characteristics of linear programming (LP) problem? Write down the steps for solving a LP problem by Simplex method?

10+10

3. a) Using Simplex method, Maximize $F = x_1 + 2 x_2 + x_3$ subject to

$$2 x_1 + x_2 - x_3 \le 2$$

 $-2 x_1 + x_2 - 5 x_3 \ge -6$
 $4 x_1 + x_2 + x_3 \le 6$
 $x_i \ge 0$, $i = 1, 2, 3$

- b) Write down the working principles of genetic algorithm.
- c) Define fitness function, mutation and cross over.

10+4+6

- 4. a) What is unimodal function?
 - b) Write down the fundamental rules of region elimination methods.
 - c) What are the differences between bounding phase and exhaustive search methods?
 - d) Explain point estimation method.

5+5+5+5

- 5. a) Distinguish three different design philosophies: 'Safe life', 'Fail safe' and 'Damage tolerance'.
 - b) What are the different types of fracture modes?
 - c) What is Irwin's correction as an extension of Griffith's theory?
 - d) What are the conditions for stable crack growth for fixed load and fixed displacement conditions?

5+5+5+5

- 6. a) What are the different types of fracture modes?
 - b) A cylindrical pressure vessel with a diameter of 6.0 m and wall thickness 25 mm, underwent catastrophic fracture when the internal pressure reached 18.5 MPa. The properties of the vessel material are E=207 GPa, σ_y=2450 MPa, G_c=130 kJ/m². (a) Show that the failure is not because of design based on von Mises yield criterion. (b) Determine the crack size based on Griffith's analysis that caused failure.

8+12

- 7. a) A 120 kg machine is mounted at the mid span of a 1.5 m long simply supported beam of elastic modulus E = 2 x 10¹¹ N/m² and cross section moment of inertia I = 1.53 x 10⁻⁶ m⁴. An experiment is run on the system during which the machine is subjected to a harmonic excitation of magnitude 2000 N at a variety of excitation frequencies. The largest steady state amplitude recorded during the experiment is 2.5 mm. Estimate the damping ratio of the system.
 - b) Define K_{IC} and K_I and how those are applied in design?
 - c) Explain the different parameters on which K_{IC} of a component depends on.

12+4+4

- 8. a) State the different types of monitoring systems.
 - b) What are the steps to be followed for establishing the condition monitoring program?
 - c) What is false alarm? How this can be avoided?
 - d) What are the advantages of envelope detection?

5+5+5+5