INTRODUCTION TO FINITE ELEMENT METHOD FOR MECHANICAL ENGINEERS

B.E. MECHANICAL ENGINEERING THIRD YEAR SECOND SEMESTER EXAM 2017

Answer any five questions

Time: 3 hours

Question 1

- a) Derive the stiffness matrix of a bar element using minimization of potential energy.
- b) Write down the transformation matrix of a two-dimensional bar element and show the process of determining the stiffness matrix in global coordinates.
- c) What transformation matrix should you use for a three-dimensional bar element?

Question 2

Find the equivalent nodal loads for the uniformly distributed load shown in Figure Q2 For both the elements b=h=2cm. The modulus of elasticity is $2 \times 10^7 N / cm^2$ The expression for element stiffness matrix is

Ľ,

$$\underline{k} = \frac{E}{L} \times \begin{bmatrix} AC^2 + \frac{12I}{L^2}S^2 & \left(A - \frac{12I}{L^2}\right)CS & -\frac{6I}{L}S & -\left(AC^2 + \frac{12I}{L^2}S^2\right) & -\left(A - \frac{12I}{L^2}\right)CS & -\frac{6I}{L}S \\ & AS^2 + \frac{12I}{L^2}C^2 & \frac{6I}{L}C & -\left(A - \frac{12I}{L^2}\right)CS & -\left(AS^2 + \frac{12I}{L^2}C^2\right) & \frac{6I}{L}C \\ & 4I & \frac{6I}{L}S & -\frac{6I}{L}C & 2I \\ & AC^2 + \frac{12I}{L^2}S^2 & \left(A - \frac{12I}{L^2}\right)CS & \frac{6I}{L}S \\ & & AS^2 + \frac{12I}{L^2}C^2 & -\frac{6I}{L}C \end{bmatrix}$$
Symmetry

Derive the final three simultaneous equations after incorporation of boundary conditions. Refer Figure Q2

Question 3

Figure Q3

An assembly of two constant-strain triangles is shown in Figure Q3. Assume plane stress conditions. Take thickness as t = 0.001m. <u>All dimensions are in meters</u>.

For the sake of calculation take $\frac{E}{1-\mu^2} = 200GPa$ and $\mu = 0.25$

Use the relation $N_i = \frac{l}{2\Delta} (a_i + b_i x + c_i y)$

Where, $a_1 = x_2y_3 - x_3y_2$ $b_1 = y_2 - y_3$ $c_1 = x_3 - x_2$

- a) How many degrees of freedom does this system have after elimination of the boundary conditions?
- b) Assemble the element stiffness and the force vector only for the effective (free) degrees of freedom

Question 4

- a) Mention all the stress terms in cylindrical co-ordinates for an axisymmetric problem
- b) Draw a triangular 3 node axisymmetric element and show the nodal degrees of freedom.
- [^] Although the shape function is identical to a CST, yet the stress is not constant throughout the element. Explain.
- c) Derive the expression for stiffness matrix for such an element?

Question 5

- (a) Derive the shape functions for a 4-node quadrilateral isoparametric finite element
- (b) Sketch the shape functions
- (c) Describe the process of forming the stiffness matrix for this element
- (d) What is Jacobian of transformation?

Question 6

- a) Write down the shape functions of a nine-node isoparametric quadrilateral using Lagrange interpolation function
- b) Sketch the above shape functions.
- c) Evaluate the integral $\int_{-1-1}^{1} r^2 s^2 dr ds$. Use 2 point and 3 point Gauss quadrature rule. Use the data given in Table 1. Are the results same? Explain your answer.

Table 1.Data for 2 point and 3 point Gauss quadrature rule

Number	Locations	Weights
of	·	
points		
2	±0.57735 02691 89626	1.00000 00000 00000
3	± 0.77459 66692 41483	0.55555 55555 55556
	0.00000 00000 00000	0.88888 88888 88889