BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING EXAMINATION, 2017

(2nd Year, 1st Semester, Supplementary)

MATHEMATICS - III

Time: Three hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

PART I

(Answer any five questions.)

- 1. (i) Find $L^{-1}\left\{\frac{1-3s}{s^2+8s+21}\right\}$. 3+3+4=10 (ii) Find $L^{-1}\left\{\frac{3s-2}{2s^2-6s-2}\right\}$.
 - (iii) Show that $L(\cos at) = \frac{s}{s^2 + a^2}$, using the definition of Laplace Transform.
- 2. (i) Using Laplace transform. find solution of $y'' + 25y = 10\cos(5t)$, where y(0) = 2, y'(0) = 0.

(ii) Find
$$L^{-1}\left\{\frac{s-2}{(s-2)^2+25} + \frac{s+4}{(s+4)^2+81} + \frac{1}{(s+2)^2+9}\right\}$$
. 6+4=10

- 3. (i) State and prove the first shifting theorem of Laplace Transformation.
 - (ii) Find the complex Fourier Transform of $f(x) = e^{-a|x|}$, where x belongs to $(-\infty, \infty)$.

6+4=10

- 4. (i) Find the Fourier series expansion for f(x), if $f(x) = |x|, -\pi < x < \pi$.
 - (ii) Find the Fourier series expansion for f(x), if $f(x) = x^2$, $-\pi < x < \pi$.

5+5=10

5. (i) Find the Fourier series for 1 + x on $[-\pi, \pi]$.

(ii) Find the Fourier transform of
$$e^{-4(x-3)^2}$$
. 5+5=10

[Turn over

- 6. (i) Find the Fourier cosine transform of e^{-x^2} and hence evaluate Fourier sine transform of xe^{-x^2} .
- (ii) Solve $\frac{\partial u}{\partial t} = 2 \frac{\partial u^2}{\partial x^2}$, if u(0,t) = 0, $u(x,0) = e^{-x} (x > 0)$, u(x,t) is bounded where x > 0, t > 0.

5+5=10

7. Show that $L(\cos^2 t) = \frac{s^2+2}{s(s^2+4)}$ using L(f'(t)) = sF(s) - f(0), where L(f(t)) = F(t).

PART II

GROUP - A

Answer any three questions.

3F10=30

- 8. a) Solve: $(5x^4 + 3x^2y^2 2xy^3)dx + (2x^3y 3x^2y^2 5y^4)dy$
 - b) Solve: $\frac{d^3y}{dx^3} 3\frac{d^2y}{dx^2} + 4\frac{dy}{dx} 2y = e^x + \cos x$ 4+6
- 9. a) Solve: $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} 3y = x^2 \log x$
 - b) Solve the equation, by the method of variation of parameters $\frac{d^2y}{dx^2} + n^2y = \sec nx$ 6+4
- 10. a) Find the series solution of the equation $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} y = 0$ abour the point x = 0.
 - b) Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{Sinx}$ 7+3
- 11. a) Show that, $(2n+1)P_n(x) P_{n+1}(x) P'_{n-1}(x)$
 - b) Solve: $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ 5+5
- 12. a) Solve: $\frac{d^2y}{dx^2} \frac{2dy}{dx} + y = xe^x \sin x$
 - b) Show that, $\frac{d}{dx} \left[x^4 J_n(x) \right] = x^4 J_{n-1}(x)$ 5+5

[Turn over

GROUP - B

Answer any two questions.

2F10=20

- 13. a) Find the partial differential equation by the elimination of a, b from z = (x + a)(y + b)
 - b) Solve: $(y^2 + z^2 x^2)p 2xyq + 2zx = 0$ 4+6
- 14. A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points a velocity $\lambda x(l-x)$, find the displacement of the string at any distance x from one end at any time t.
- 15. Determine the solution of the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, where the boundary conditions are u(0,t) = 0, u(l,t) = 0(t > 0) and the initial condition u(x,0) = x, l being the length of the bar.