Ref. No.: ME/T/215/2017(S)

B. MECHANICAL 2ND YEAR 1ST SEM. SUPPLE EXAMINATION, 2017

MATERIAL SC. AND ENGG. Time: Three hours

Full Marks: 100

Answer any FIVE questions

- 1a) Define co-ordination number. Show that the minimum relative size (r/R) for the co-ordination number three is 0.155.
 (2+4)
- b). Explain the tetrahedral structure of a diamond unit cell. The lattice parameter for diamond is 3.57Å,
 calculate its density and packing efficiency. (4+10)
- 2a) Explain any two types of diffusion mechanisms. (6)
- b) At 900 °C, what is the time required to carburize a steel with initial composition of 0.2% carbon to 1% carbon at a depth of 0.2 mm? Assume a constant surface concentration of 1.4% carbon due to carburising atmosphere.

Given:
$$D_o = 0.7 \times 10^{-4}$$
 $\frac{m^2}{s}$; $Q - 157 \frac{KJ}{mol}$; $R = 8.314 \frac{J}{mol K}$

Z	0.25	0.30	0.35	0.40
erf(Z)	0.2763	0.3268	0.3794	0.4284

(14)

(12)

- 3a) Draw the Fe-Fe3C equilibrium phase diagram according to scale and label it.
 - b) How much pro-eutectoid ferrite is there in a slowly cooled 0.6% steel? How much eutectoid ferrite is there
 - in the same steel? (8)
- 4.a) Derive the expression for composite elastic modulus under iso-strain condition for a fibre reinforced composite material. Also mention the assumptions made to derive the expression. (6+4)
- b) For a fibre reinforced composite material, the modulus ratio is 26 and the fibre takes 35% of the cross sectional area. What percentage of the longitudinal load is taken by the fibre?
 (5)
- c) Explain the stress-strain behaviour of a fibre reinforced composite under longitudinal loading. (5)
- 5a) Explain the 'Energy Band Structure' in solids. Differentiate among conductors, semiconductors and

insulators in the light of energy band structure. What is energy band gap?					
b) Calculate band gap for a semi-conductor from the following data:					
The conductivity of the semi-conductor at 30° C. = $260 (\Omega m)^{-1}$					
The conductivity of the semi-conductor at 180° C. = $1200 \ (\Omega m)^{-1}$					
6a) What is vulcanization ? If 10 gm of sulphur is added to 100 gm of butadiene rubber, what	is the maximum				
fraction of the cross-link sites that can be connected?					
b) Write down the Mer-structure of the following and mention the uses of them.					
i) PE ii) PS iii) PVC iv)PTFE	(10)				
7a) Describe the process of Recovery, Recrystallization, and Grain Growth. How mechanical properties are					
affected by the said processes?					
b) Write down the Hume-Rothery rules for solid solubility.					
c) Differentiate between hot working and cold working.					
8. Write short notes on the followings (any four):					
a) Full annealing in heat treatment					
b) Metallic bond					
c) Diffusion flux					
d) Normalising in heat treatment					
e) Thermosetting plastic					
f) Traditional ceramics					
g) Viscoelastic property of polymers					