Ref. No. ME/Math/T/111/2017(S)

BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING SUPPLEMENTARY EXAMINATION, 2017

(1st year 1st Semester)

Mathematics - I

Time: Three hours

Full Marks: 100

(50 marks for each part)
Use separate Answer script for each part.

PART - I

Symbols & Notations have their usual meanings. Answer any **FIVE** questions.

1. (a) If $y = \cos(m \sin^{-1} x)$, then prove that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0.$$

(b) Verify Lagrange's mean value theorem for the function

$$f(x) = x(x-1)(x-2) \ in \left[0, \frac{1}{2}\right].$$
 [5+5]

- 2. (a) State Cauchy's Mean Value Theorem.
 - (b) Does f(x) = |x| satisfy Rolle's theorem on [-1,1]? Justify your answer.

(c) Use Mean Value Theorem to show that $x \le \sin^{-1} x < \frac{x}{\sqrt{(1-x^2)}}$. [2+3+5]

- 3. (a) Use Maclaurin's theorem to expand $f(x) = \sin x$ in infinite series and give the range of validity of expansion.
 - (b) Use L'Hopital's rule to evaluate $\lim_{x\to 0} \log_{\tan^2 x} (\tan^2 2x)$.

[5+5]

- 4. (a) If ρ_1 and ρ_2 be the radii of curvature at the ends of conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then show that $\rho_1^{\frac{2}{3}} + \rho_2^{\frac{2}{3}} = (a^2 + b^2)(ab)^{-\frac{2}{3}}$.
 - (b) Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (1,1).

[5+5]

- 5. (a) Show that $f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ is continuous at (0,0).
 - (b) Test the differentiability of the function $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2+y^2}}, & x^2+y^2 \neq 0 \\ 0, & x^2+y^2 = 0 \end{cases}$ at (0,0).

[5+5]

- 6. (a) State and prove Euler's Theorem for a homogeneous function in two variables x and y of degree n.
 - (b) If $= \tan^{-1} \frac{x^3 + y^3}{x y}$, then prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \sin 2u \ (1 - 4\sin^{2} u).$$

[5+5]

- 7. (a) Define Limit of a Sequence and hence show that $\{x_n\} \to \frac{1}{2}$ as $n \to \infty$, where $x_n = \frac{n^2+1}{2n^2+3}$.
 - (b) Examine the convergence of the series $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots$ $(x \ge 0)$. [5+5]

BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING SUPPLEMENTARY EXAMINATION, 2017

(1st Year, 1st Semester, Supplementary)

Mathematics-I

Time: Three hours

Full Marks: 100

8

7

(50 marks for each Group)

(Symbols and notations have their usual meanings)

Use a separate Answer-Script for each Group GROUP-B (50 Marks)

Answer Q. No. 8 and any three from the rest.

8. Evaluate $\int_0^{\frac{\pi}{2}} \sin x \log (\sin x) dx$.

9. a) A function f defined on [0,1] by $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$ Find $\int_0^1 f dx$ and $\int_0^{\overline{1}} f dx$.

b) Let $f:[-3, 3] \to R$ be define by $f(x) = \begin{cases} 2x \sin \frac{\pi}{x} - \pi \cos \frac{\pi}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$ Examine whether f is Riemann integral in [-3, 3] and hence find $\int_{-3}^{3} f \, dx$.

10. a) Evaluate $\iint_{D} \sqrt{4a^{2}-x^{2}-y^{2}} \ dxdy$, where region D is the upper half of the circle $x^{2}+y^{2}-2ax=0.$ 8
b) Show that $\int_{0}^{\frac{\pi}{2}}e^{-\sin x} \ dx < \frac{\pi}{2} \ (1-e^{-1}).$

11. a) Evaluate $\iiint \frac{dxdydz}{\sqrt{1-x^2-y^2}}$, the field of integration being the positive octant of the sphere $x^2 + y^2 + z^2 = 1$.

b) For the function f defined as $f(x,y) = \begin{cases} \frac{1}{y^2} & \text{if } 0 < x < y < 1 \\ -\frac{1}{x^2} & \text{if } 0 < y < x < 1 \\ 0 & \text{otherwise if } 0 \le x, y \le 1 \end{cases}$

Does the integral of $\iint_R f(x, y) dx dy$ exists over R=[0, 1; 0, 1]?

12. Examine the convergence of the following improper integrals:

Examine whether f is Riemann integral in [a, b].

a)
$$\int_0^1 \frac{dx}{(x+1)(x+2)\sqrt{x(1-x)}}$$
 b) $\int_0^1 \frac{\sin\frac{1}{x}}{\sqrt{x}} dx$ c) $\int_0^\infty \frac{\sin x}{x} dx$

13. a) State and proved fundamental theorem for integral calculus. 7
b) Calculate the value of $\int_0^1 (4x - x^2) dx$ using (i) Trapezoidal rule, (ii) Simpson's $\frac{1}{3}$ rule by taking 10 intervals. Compute the exact value and find the absolute error in your result.