Ex/ME/Math/T/122/2017(Old)
subject to the following boundary and initial conditions:
$\mathrm{u}(0, \mathrm{t})=\mathrm{u}(\mathrm{L}, \mathrm{t})=0, \mathrm{t} \geq 0$
$u(x, 0)=f(x)=\left\{\begin{array}{c}\frac{2 k}{L} x, 0<x<\frac{L}{2} \\ \frac{2 k}{L}(L-x), \frac{1}{2}<x<L\end{array}\right.$
and $u_{t}(x, 0)=0$.
13. Apply the method of separation of variables to obtain a formal solution of one dimensional heat equation

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\mathrm{K} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}, 0 \leq \mathrm{x} \leq \mathrm{L}
$$

along with the boundary conditions
$\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(\mathrm{L}, \mathrm{t})=0 ; \mathrm{t} \geq 0$ and the initial condition $u(x, 0)=f(x)$.
14. Solve the Laplace's equation
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ; 0 \leq x \leq a, 0 \leq y \leq b$
satisfying the boundary conditions :
$\mathrm{u}(0, \mathrm{y})=0, \mathrm{u}(\mathrm{x}, 0)=0$,
$\mathrm{u}(\mathrm{x}, \mathrm{b})=0, \frac{\partial \mathrm{u}}{\partial \mathrm{x}}(\mathrm{a}, \mathrm{y})=\sin ^{3}\left(\frac{\pi \mathrm{y}}{\mathrm{a}}\right)$
by applying the method of separation of variables.

Bachelor of Engineering in Mechanical

Engineering Examination, 2017
(1st Year, 2nd Semester, Old Syllabus)

Mathematics - IVM

Time: Three hours
Full Marks : 100
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I

Answer any five questions.
$510=50$

1. What do you mean by Fourier series of a function $\mathrm{f}:[-\pi, \pi] \rightarrow \mathbb{R}$? Show that the Fourier series of the function $f(x)=\sin x+\cos 2 x,-\pi \leq x \leq \pi$ is the function itself.
2. State Fundamental Theorem of convergence of Fourier series. Find the Fourier series for the function defined by
$f(x)=\left\{\begin{array}{c}-\pi \text { for }-\pi<x<0 \\ x \text { for } 0<x<\pi\end{array}\right.$
Hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \infty=\frac{\pi^{2}}{8}$.
3. Find the Fourier series of the function
$f(x)=\left\{\begin{array}{c}\cos x, 0 \leq x \leq \pi \\ -\cos x,-\pi \leq x \leq 0\end{array}\right.$
Hence deduce that $\frac{2}{1.3}-\frac{6}{5.7}+\frac{10}{9.11}-\cdots \infty=\frac{\pi}{4 \sqrt{2}}$.
4. Find the Fourier series of the function $f(x)=x \sin x,-\pi \leq x \leq \pi$. Hence deduce that $\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\cdots \alpha=\frac{\pi}{4}$.

10
5. a) Find the half range Fourier cosine series of the function $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}, 0<\mathrm{x}<1$.

5
b) Find the half range sine series of the function $f(x)=x(\pi-x)$ in $0<x<\pi$.

5
6. Find the Fourier series of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}-\mathrm{x}^{2},-\pi<\mathrm{x}<\pi$. Hence deduce that
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \infty=\frac{\pi^{2}}{12}$.
7. State Parseval's Identity. Using this identity show that $\sum_{n=1}^{\alpha} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$ by Calculating the Fourier series of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2},-\pi<\mathrm{x}<\pi$. 10

PART - II

(Symbols have their usual meaning)

Answer any five of the following questions.
8. a) Form the partial differential equation by eliminating the function ϕ from $\phi\left(x+y+z, \quad x^{2}+y^{2}-z^{2}\right)=0$.
b) Describe Lagrange's method to solve a partial differential equation.
$5+5$
9. a) Find the general integral of $z^{2}-p z+q z+(x+y)^{2}=0$
b) Use Lagrange's method to solve the p.d.e, $\mathrm{p} \cos (\mathrm{x}+\mathrm{y})+\mathrm{q} \sin (\mathrm{x}+\mathrm{y})=\mathrm{z}$. $5+5$
10. a) Use Charpit's method to solve the equation $\mathrm{px}+\mathrm{qy}=\mathrm{pq}$.
b) Find the general integral of the partial differential equation $\mathrm{p}^{2}+\mathrm{q}^{2}=\mathrm{n}^{2}$.
11. a) Find the complete integral and singular integral of the equation $\mathrm{z}=\mathrm{px}+\mathrm{qy}-2 \sqrt{\mathrm{pq}}$.
b) Solve : $\left(x^{2}+y^{2}\right)\left(p^{2}+q^{2}\right)=1$.
12. Find the solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} ; 0<x<L
$$

