Bachelor of Engineering in Mechanical Engineering Examination, 2017

(1st Year, 1st Semester, Old)
Mathematics - IM (Old)
Time : Three hours
Full Marks : 100
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I

Answer any five questions.
Symbols/Notations have their usual meanings.

1. a) If $y=e^{a x} \sin b x$ then show that $y_{n}=\left(a^{2}+b^{2}\right)^{\frac{n}{2}} e^{a x} \sin \left(b x+n \tan ^{-1} \frac{b}{a}\right)$.
b) If $I_{n}=D^{n}\left(x^{n} \log x\right)$ then prove that $I_{n}=n!\left[\frac{1}{n}+\frac{1}{n-1}+\frac{1}{n-2}+\cdots+\log x\right]$.
2. a) State and prove Lagrange's Mean value theorem.
b) Examine applicability of Rolle's theorem in $[-1,1]$ for the function $f(x)=|x| . \quad 6+4$
3. a) Prove that $0<\frac{1}{\log (1+\mathrm{x})}-\frac{1}{\mathrm{x}}<1, \forall \mathrm{x}>0$.
b) Show that Lagrange's remainder after n terms tends to zero when n is large and hence find the infinite series for e^{x}.
4. a) Determine the values of a and b so that

$$
\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1
$$

b) If $f(x, y)=\left\{\begin{array}{ccc}\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & \text { when } & x^{2}+y^{2} \neq 0 \\ 0 & \text { when } & x^{2}+y^{2}=0\end{array}\right.$
then show that $\mathrm{f}_{\mathrm{x}}(0,0)=1$ and $\mathrm{f}_{\mathrm{y}}(0,0)=-1$.
5. a) If $H(x, y)$ be a homogeneous function of x and y of degree n having continuous partial derivatives and $u(x, y)=\left(x^{2}+y^{2}\right)^{-\frac{n}{2}}$, show that $\frac{\partial}{\partial x}\left(H \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(H \frac{\partial u}{\partial y}\right)=0$
b) If $u=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}$ then prove that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=u \text { and } \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

6. a) State and prove Euler's theorem of homogeneous functions of two variables.
b) Find the points on the curve $y=x^{2}+3 x+4$ the tangent at which passes through the origin.

$$
5+5
$$

7. a) Find the radius of curvature at any point t for the ellipse $x=a \cos t, y=b \sin t$.
b) Show that $f(x, y)=\left\{\frac{x y}{x^{2}+y^{2}}\right.$, when $x^{2}+y^{2} \neq 0$

$$
0, \quad \text { when } \quad x^{2}+y^{2}=0
$$

BECHELOR OF ENGINEERING IN MECEIANICAL ENGINEERING
 EXKMMINETION, 2017

($1^{\text {st }}$ Year, $1^{\text {st }}$ Semester, Supplementary)
 Mathematics-IM (OLD)

Time: Three hours
Full Marks: 100
(50 marks for each part)
(Symbols and notations have their usual meanings)

Use a separate Answer-Script for each part

PART-II (50 Marks)

Answer Q. No. 8 and any three from the rest.
8. Evaluate $\int_{0}^{1} x^{3}\left(1-x^{2}\right)^{5 / 2} \mathrm{dx}$.
9. a) Prove that $\int_{0}^{1}\left\{\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y\right\} d x \neq \int_{0}^{1}\left\{\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x\right\} d y$

Does the integral of $\iint_{R} \frac{x-y}{(x+y)^{3}} d x d y$ exists over $\mathrm{R}=[0,1 ; 0,1]$? Justify your answer.
b) Changing the order of integration, evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x y} \sin n x d x d y$.

Hence deduce that $\int_{0}^{\infty} \frac{\sin n x}{x} \mathrm{dx}=\frac{\pi}{2}$.
10. a) A function f defined on $[a, b]$ by $f(x)=x^{2}$. Find $\int_{\underline{a}}^{b} f d x$ and $\int_{a}^{\bar{b}} f d x$. Examine whether f is Riemann integral in $[a, b]$.
b) Show that $\frac{\pi^{2}}{9}<\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} d x<\frac{2 \pi^{2}}{9}$.
11. a) Use first mean value theorem to show that

$$
\begin{equation*}
\frac{\pi}{6} \leq \int_{0}^{\frac{1}{2}} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-\theta^{2} x^{2}\right)}} \leq \frac{\pi}{6} \frac{1}{\sqrt{1-\frac{\theta^{2}}{4}}}, \theta^{2}<1 . \tag{8}
\end{equation*}
$$

b) Evaluate $\iint_{D} x^{2} y d x d y$ over the first quadrant of the ellipse $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1 . \quad 7$
12. Examine the convergence of the following improper integrals:
a) $\int_{0}^{2} \frac{1}{\sqrt{x(2-x)}} d x$ b) $\int_{0}^{1} \frac{d x}{(x+1)(x+2) \sqrt{x(1-x)}}$ c) $\int_{0}^{\infty} \frac{\sin x}{x} d x$
13. a) Let $f:[-a, a] \rightarrow R$ be define by $f(x)=\left\{\begin{array}{cc}3 x^{2} \cos \frac{\pi}{x^{2}}+2 \pi \sin \frac{\pi}{x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Examine whether f is Riemann integral in $[-a, a]$ and hence find $\int_{-a}^{a} f d x$.
b) Evaluate $\iiint x y z d x d y d z$, the field of integration being the positive octant of the ellipsoid $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}+\frac{z^{2}}{\gamma^{2}} \leq 1$.

