BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING EXAMINATION, 2017

(1st Year, 1st Semester, Old)

MATHEMATICS - IM (OLD)

Time: Three hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

PART - I

Answer any five questions.

Symbols/Notations have their usual meanings.

1. a) If
$$y = e^{ax} \sin bx$$
 then show that $y_n = (a^2 + b^2)^{\frac{n}{2}} e^{ax} \sin \left(bx + n \tan^{-1} \frac{b}{a} \right)$.

b) If
$$I_n = D^n(x^n \log x)$$
 then prove that $I_n = n! \left[\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + \log x \right]$. 5+5

- 2. a) State and prove Lagrange's Mean value theorem.
 - b) Examine applicability of Rolle's theorem in [-1, 1] for the function f(x) = |x|. 6+4
- 3. a) Prove that $0 < \frac{1}{\log(1+x)} \frac{1}{x} < 1, \forall x > 0.$
 - Show that Lagrange's remainder after n terms tends to zero when n is large and hence find the infinite series for e^x.
- 4. a) Determine the values of a and b so that

$$\lim_{x \to 0} \frac{a \sin 2x - b \sin x}{x^3} = 1.$$

b) If
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{when } x^2 + y^2 \neq 0\\ 0 & \text{when } x^2 + y^2 = 0 \end{cases}$$

then show that $f_x(0,0) = 1$ and $f_y(0,0) = -1$.

5+5

[Turn over

- 5. a) If H(x,y) be a homogeneous function of x and y of degree n having continuous partial derivatives and $u(x,y) = (x^2 + y^2)^{-\frac{n}{2}}$, show that $\frac{\partial}{\partial x} \left(H \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(H \frac{\partial u}{\partial y} \right) = 0$
 - b) If $u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ then prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = u \text{ and } \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$
 5+5

- 6. a) State and prove Euler's theorem of homogeneous functions of two variables.
 - b) Find the points on the curve $y = x^2 + 3x + 4$ the tangent at which passes through the origin. 5+5
- 7. a) Find the radius of curvature at any point t for the ellipse $x = a \cos t$, $y = b \sin t$.
 - b) Show that $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{when } x^2 + y^2 \neq 0 \\ 0, & \text{when } x^2 + y^2 = 0 \end{cases}$

is not continuous at (0, 0). 5+5

BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING EXAMINATION, 2017

(1st Year, 1st Semester, Supplementary)

Mathematics-IM (OLD)

Time: Three hours

Full Marks: 100

(50 marks for each part)

(Symbols and notations have their usual meanings)

Use a separate Answer-Script for each part

PART-II (50 Marks)

Answer Q. No. 8 and any three from the rest.

- 8. Evaluate $\int_0^1 x^3 (1-x^2)^{5/2} dx$.
- 9. a) Prove that $\int_0^1 \left\{ \int_0^1 \frac{x-y}{(x+y)^3} dy \right\} dx \neq \int_0^1 \left\{ \int_0^1 \frac{x-y}{(x+y)^3} dx \right\} dy$ Does the integral of $\iint_R \frac{x-y}{(x+y)^3} dx dy \text{ exists over } R=[0, 1; 0, 1]?$ Sustify your answer.
 - b) Changing the order of integration, evaluate $\int_0^\infty \int_0^\infty e^{-xy} \sin nx \, dx dy.$ Hence deduce that $\int_0^\infty \frac{\sin nx}{x} \, dx = \frac{\pi}{2}.$ 7
- 10. a) A function f defined on [a, b] by $f(x) = x^2$. Find $\int_{\underline{a}}^{b} f \, dx$ and $\int_{a}^{\overline{b}} f \, dx$. Examine whether f is Riemann integral in [a, b].

 8

 b) Show that $\frac{\pi^2}{9} < \int_{\frac{\pi}{a}}^{\frac{\pi}{2}} \frac{x}{\sin x} \, dx < \frac{2\pi^2}{9}$.
- 11. a) Use first mean value theorem to show that

$$\frac{\pi}{6} \le \int_0^{\frac{1}{2}} \frac{dx}{\sqrt{(1-x^2)(1-\theta^2x^2)}} \le \frac{\pi}{6} \frac{1}{\sqrt{1-\frac{\theta^2}{4}}}, \quad \theta^2 < 1.$$

- b) Evaluate $\iint_D x^2 y \, dx dy$ over the first quadrant of the ellipse $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$.
- 12. Examine the convergence of the following improper integrals:

a)
$$\int_0^2 \frac{1}{\sqrt{x(2-x)}} dx$$
 b) $\int_0^1 \frac{dx}{(x+1)(x+2)\sqrt{x(1-x)}} c$) $\int_0^\infty \frac{\sin x}{x} dx$

- 13. a) Let $f:[-a, a] \to R$ be define by $f(x) = \begin{cases} 3x^2 \cos \frac{\pi}{x^2} + 2\pi \sin \frac{\pi}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Examine whether f is Riemann integral in [-a, a] and hence find $\int_{-a}^{a} f \, dx$.
 - b) Evaluate $\iiint xyz \, dx \, dy \, dz$, the field of integration being the positive octant of the ellipsoid $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\gamma^2} \le 1$.