Ref. No. EX/ME/MATH/T/121/2017(OLD)

B.E. MEC 1ST YR, 2ND SEM EXAM, 2017(OLD) MATHEMATICS-III M (OLD)

FULL MARKS: 50 TIME:

Instructions: 1. Use separate answer scripts for each group

2. Answer any five questions

PART: I

1. a) Show that

$$i) L\{t^n\} = \frac{n!}{s^{n+1}}.$$

ii)
$$L(e^{at}) = \frac{1}{s-a}$$
, if $s > a$.

b) Find the Laplace transform of $\int_0^1 \left(\frac{1-e^{-2x}}{x}\right) dx$.

 $(3 \times 2) + 4$

2. Find the Fourier series to represent $f(x) = x^2 - 2$ in interval -2 < x < 2.

10

3. Find Fourier series for f(x) = x in $0 < x < \pi$.

10

4. a) Find the Fourier cosine transform of e^{-x^2} and hence evaluate Fourier sine transform of xe^{-x^2} .

b) Solve
$$\partial u/\partial t = 2 \partial u^2/\partial x^2$$
, if $u(0,t) = 0$, $u(x,0) = e^{-x} (x > 0)$, $u(x,t)$ is bounded where $x > 0$, $t > 0$.

5. State Dirichlet's conditions. Find the Fourier series expansion for f(x), if

$$f(x) = -k, -\pi < x < 0$$

$$k, \quad 0 < x < \pi.$$
Hence deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$.

6. a) Find the Laplace transform of the function

$$f(t) = \sin wt, \quad 0 < t < \frac{\pi}{w}$$

$$0, \quad \frac{\pi}{w} < t < \frac{2\pi}{w}.$$

b) Find the Laplace transforms of $t^2e^{-3t}\sin 2t$.

c) Apply Convolution theorem to evaluate
$$L^{-1}\left\{\frac{s}{(s^2+1)(s^2+4)(s^2+9)}\right\}$$
. 3+3+4

7. a) Find the inverse Laplace transforms of the following:
i)
$$\frac{1}{s-2} + \frac{2}{s+5} + \frac{6}{s^4}$$
, ii) $\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}$.

b) Solve by using Laplace transformation:
$$(D^2 + 9)y = \cos(2t)$$
 if $y(0) = 1$, $y(\frac{\pi}{2}) = -1$. $(3 \times 2) + 4$

PART - II

Answer question no.7 and any three from the rest.

- 7. Write down the axiomatic definition of probability and show that classical definition is a particular case of aximatic definition.
- 8. a) Explain the following terms with examples:
 - i) random experiment ii) sample space iii) event 6
 - b) Prove that for n events $A_1, A_2,, A_n$,

$$\sum_{i=1}^{n} P(A_i) - \sum_{i=1}^{n} \sum_{\substack{j=1 \ i < j}}^{n} P(A_i \cap A_j) \le P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$$
10

- 9. a) A five-figure number is formed by the digits 0, 1, 2, 3, 4 (without repetition.) Find the probability that the number formed is divisible by 4.
 - b) State and prove Baye's Theorem. 5
 - c) There are three having the following compositions of black and white balls :