TIME:
FULL MARKS: 50
Instructions: 1. Use separate answer scripts for each group
2. Answer any five questions

PART: I

1. a) Show that
i) $L\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$.
ii) $L\left(e^{a t}\right)=\frac{1}{s-a}$, if $s>a$.
b) Find the Laplace transform of $\int_{0}^{1}\left(\frac{1-e^{-2 x}}{x}\right) d x$. $(3 \times 2)+4$
2. Find the Fourier series to represent $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2$ in interval $-2<x<2$.
3. Find Fourier series for $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $0<x<\pi$.
4. a) Find the Fourier cosine transform of $e^{-x^{2}}$ and hence evaluate Fourier sine transform of $x e^{-x^{2}}$.
b) Solve $\partial u / \partial t=2 \partial u^{2} / \partial x^{2}$, if $u(0, t)=0, u(x, 0)=e^{-x}(x>0), u(x, t)$ is bounded where $x>$ $0, t>0$.
5. State Dirichlet's conditions. Find the Fourier series expansion for $f(x)$, if

$$
\begin{array}{r}
\mathrm{f}(\mathrm{x})=-\mathrm{k}, \quad-\pi<x<0 \\
\mathrm{k}, \quad 0<x<\pi .
\end{array}
$$

Hence deduce that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$.
6. a) Find the Laplace transform of the function

$$
\begin{array}{cl}
f(t)=\sin w t, & 0<t<\frac{\pi}{w} \\
0, & \frac{\pi}{w}<t<\frac{2 \pi}{w}
\end{array}
$$

b) Find the Laplace transforms of $t^{2} e^{-3 t} \sin 2 t$.
c) Apply Convolution theorem to evaluate $L^{-1}\left\{\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)\left(s^{2}+9\right)}\right\}$.
7. a) Find the inverse Laplace transforms of the following:

$$
\begin{array}{ll}
\text { i) } \frac{1}{s-2}+\frac{2}{s+5}+\frac{6}{s^{4}}, & \text { ii) } \frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}
\end{array}
$$

b) Solve by using Laplace transformation: $\left(D^{2}+9\right) y=\cos (2 t)$ if $y(0)=1, y\left(\frac{\pi}{2}\right)=-1$.
(50 marks for each Part)

PART - II

Answer question no. 7 and any three from the rest.
7. Write down the axiomatic definition of probability and show that classical definition is a particular case of aximatic definition.
8. a) Explain the following terms with examples :
i) random experiment
ii) sample space
iii) event
6
b) Prove that for n events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \ldots, \mathrm{~A}_{\mathrm{n}}$,

$$
\begin{equation*}
\sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{i=1}^{n} \sum_{j=1}^{n} P\left(A_{i} \cap A_{j}\right) \leq P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right) \tag{10}
\end{equation*}
$$

9. a) A five-figure number is formed by the digits $0,1,2,3,4$ (without repetition.) Find the probability that the number formed is divisible by 4 .
b) State and prove Baye's Theorem.
c) There are three \qquad having the following compositions of black and white balls :
