Ex/ME/Math/T/121/2017

Bachelor of Engineering in Mechanical

Engineering Examination, 2017

(1st Year, 2nd Semester)
Mathematics - II
Time : Three hours
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I

Answer any five questions.
$510=50$

1. a) Find the matrix A if $\operatorname{adj} \mathrm{A}=\left(\begin{array}{lll}2 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1\end{array}\right)$ and $\operatorname{det} \mathrm{A}=2 . \quad 5$
b) Show that
$\left|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=2 a b c(a+b+c)^{3}$.
2. a) Find the inverse of the matrix $\left(\begin{array}{ccc}2 & -3 & 4 \\ 1 & 0 & 1 \\ 0 & -1 & 4\end{array}\right)$. Hence solve
the following system of equations :

$$
\begin{gathered}
2 x-3 y+4 z=-4 \\
x \quad+z=0 \\
-y+4 z=2
\end{gathered}
$$

b) Find the rank of the matrix

$$
\left(\begin{array}{cccc}
-1 & 2 & -1 & 0 \\
2 & 4 & 4 & 2 \\
0 & 0 & 1 & 5 \\
1 & 6 & 3 & 2
\end{array}\right)
$$

3. a) i) If A and B are two symmetric matrices then show that $(A B+B A)$ is a symmetric matrix and $(A B-B A)$ is a skew-symmetric matrix.
ii) Express the matrix $\mathrm{A}=\left(\begin{array}{lll}4 & 5 & 1 \\ 3 & 7 & 2 \\ 1 & 6 & 8\end{array}\right)$ as the sum of a symmetric matrix and a skew-symmetric matrix.

$$
2+3=5
$$

b) When the matrix equation $\mathrm{AX}=\mathrm{B}$ has a non zero solution? If the system of equations $a x+b y+c z=0, b x+c y+a z=0$ and $c x+a y+b z=0$ have a non-zero solution then show that either $a+b+c=0$ or $a=b=c$.

$$
1+4=5
$$

4. a) Find the eigen values and eigen vectors of the matrix

$$
\mathrm{A}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

10. a) If \vec{u} be any given continuously differentiable vector point function, then prove that $\nabla \times(\nabla \times \overrightarrow{\mathrm{u}})=\nabla(\nabla \cdot \overrightarrow{\mathrm{u}})-\nabla^{2} \overrightarrow{\mathrm{u}}$.
b) What are the values of a, b and c so that
$\vec{F}=(-4 x-3 y+a z) \hat{i}+(b x+3 y+5 z) \hat{j}+(4 x+c y+3 z) \hat{k}$
is irrotational?
$5+5$
11. Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$, where $\vec{F}=z \hat{i}+x \hat{j}-3 y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$. 10
12. State and prove Green's theorem in the plane.
13. Verify Gauss' divergence theorem for the vector function $\overrightarrow{\mathrm{F}}=2 x z \hat{i}+y \hat{j}+y z \hat{k}$ taken over the surface of the cube bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$.
14. Verify Stoke's theorem for the vector
$\overrightarrow{\mathrm{F}}=(2 x-y) \hat{\mathrm{i}}-y z^{2} \hat{\mathrm{j}}-y^{2} \mathrm{z} \hat{\mathrm{k}}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
15. a) Find the equation of the sphere which passes through the origin and touches the sphere $x^{2}+y^{2}+z^{2}=56$ at the point $(2,-4,6)$.
b) Obtain the equation of the circle lying on the sphere $x^{2}+y^{2}+z^{2}-2 x+2 y-4 z+3=0$ and having its centre at the point $(2,2,-3)$.

5

PART - II

Answer any five (5) questions.
8. a) Find the vector area and scalar area of the triangle, the position vectors of whose vertices are $(\hat{i}+\hat{j}+2 \hat{k})$, $(2 \hat{i}+2 \hat{j}+3 \hat{k})$ and $(3 \hat{i}-\hat{j}-\hat{k})$.
b) Find a vector $\vec{\delta}$, which is perpendicular to both the vectors $\vec{\alpha}=4 \hat{i}+5 \hat{j}-\hat{k}$ and $\vec{\beta}=\hat{i}-4 \hat{j}+5 \hat{k}$ and satisfies $\vec{\delta} \cdot \vec{\gamma}=2$, where $\vec{\gamma}=3 \hat{i}+\hat{j}-\hat{k}$.
9. a) Find the expressions for torsion and curvature at a point on the circular helix $\overrightarrow{\mathrm{r}}=\mathrm{a}(\cos \theta, \sin \theta, \theta \cot \beta)$.
b) Determine the directianal derivative of
$\phi(x, y z)=x y^{2} z+4 x^{2} z$ at $(-1,1,2)$ in the direction $(2 \hat{i}+\hat{j}-2 \hat{k})$. $5+5$
b) Show that the matrix $\mathrm{A}=\left(\begin{array}{ccc}1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1\end{array}\right)$ satisfies Cayley-

Hamiltor theorem. Hence find the inverse of Aif it exists.
5
5. a) Find the equation of the plane which is perpendicular to the plane $x+2 y-z+1=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y+z+2=0$. 5
b) A variable plane at a constant distance p from the origin 0 meets the axes at A, B, C. Show that the locus of the centroid of the tetrahedron 0 ABC is

$$
\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{16}{\mathrm{p}^{2}}
$$

6. a) Find the equations of projection of the line
$3 x-y+2 z-1=0=x+2 y-z-2$ on the plane $3 x+2 y+z=0$ in the symmetrical form.
b) Find the shortest distance between the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$. Find also the equations and the points of intersection in which it meets the lines.
