B. E INFO. TECH 3RD YEAR 2nd SEMESTER EXAMINATION, 2017

(2nd Semester)

FORMAL LANGUAGE AND AUTOMATA THEORY

Time: Three hours Full Marks: 100

Attempt any FIVE questions

- 1) Answer the following questions.
 - (a) Define a Deterministic Finite Automata (DFA).
 - (b) Design a DFA, D, to recognize the Language $L = \{W \in (a,b)^* | w \text{ starts and ends } with the aa or bb}$
 - (c) From the DFA of the question 1 (a), define its regular grammar.
 - (d) State the pumping lemma for regular languages.

3+8+5+4

- 2) Answer the following questions.
 - (a) Consider the following grammar.

 $S \rightarrow aaB \mid Abb$

 $A \rightarrow a \mid aA$

 $B \rightarrow b \mid bB$

- i) Which language does this grammar generate? Justify.
- ii) Prove that the grammar is ambiguous
- iii) Define an unambiguous grammar equivalent to the one given in this Question.
- (b) Define Chomsky Normal Form (CNF) of a Context Free Grammar. What are the steps to convert a general Context Free Grammar to a CNF?

(4+6+6)+(2+2)

- 3) Answer the following questions.
 - (a) State the Pumping Lemma for Context Free Grammars.
 - (b) One of the following is a Context Free Language and the other is not. For the one, which is Context Free, define the Grammar. For the one which is not a Context Free Language, prove it by Pumping Lemma.

i) $L = \{a^l b^m c^n \mid 1, m, n > 0, 1 + m \ge n\}.$

ii) $L = \{ a^l b^m c^n | 1, m, n \ge 0, 1 \ge n \text{ and } m \ge n \}$

4+(8+8)

- 4) Answer the following questions:
 - (a) When is a string accepted by a Push Down Automata (PDA)?
 - (b) Construct a PDA that accepts all binary strings that contain an equal number of a's and b's

(c) Construct an NPDA for the following Context Free Grammar.

$$S \rightarrow aABB \mid aAA$$

$$A \rightarrow aBB \mid a$$

$$B \rightarrow bBB \mid A$$

(d) Show that Context Free Languages are not closed under intersection.

- 5) Answer the following questions.
 - (a) Define a standard Turing Machine.
 - (b) Define a Turing Machine that accepts a Language $L = \{w#w \mid w \in \{0,1\}^*\}$. The TM may erase the content of the tape while processing.
 - (c) Construct a Turing Machine that accepts the language $L = \{w \in \{a,b,c\}^* \mid \#a \le \#b \le \#c\}$.

- 6) Answer the following questions.
 - (a) Consider the following Context Sensitive Grammar.

$$S \rightarrow AS \mid aT$$

$$AT \rightarrow T$$

$$T \rightarrow \epsilon$$

- i) Show a derivation of a⁹.
- ii) Which language does the grammar generate? Explain
- (b) How can you encode Turing Machine in a string of 1's and delimiters? Explain by an example.
- (c) How problem reduction helps in proving that a problem is undecidable?

$$(3+2+5)+5+5$$

- 7) Answer the following questions:
 - (a) Give one example of a language which is Context Free but not Deterministically Context Free. Can you justify that you have given a correct example?
 - (b) What is a recursively enumerable language?
 - (c) If R_1 and its complement are Recursively Enumerable languages, the language R_1 is recursive Justify or contradict.
 - (d) What is meant by an undecidable problem? Give one example of an undecidable problem.

$$(2+6)+3+5+(2+2)$$