BACHELOR OF ENGINEERING IN INFORMATION TECHNOLOGY EXAMINATION, 2017

DIGITAL SIGNAL PROCESSING 3RD YEAR, 2ND SEMESTER

Attempt any <u>five</u> of the following :

TIME: 3 Hr

FULL MARKS: 100

 a) Write down some applications of digital signal processing. Also write down some advantages and disadvantages of digital signal processing 	5+3
b) What is Sampling? Explain the process sampling and quantization of an analog signal. What is sampling theory 20	

- analog signal. What is sampling theorem?

 7

 c) Check whether the given signal is a energy or power signal? $y(n) = (\frac{1}{2})^n u(n+1) + \sin(n)$ 5
- 2. a) What is ROC? Write down the relationship between Fourier Transformation
 - b) Find out the Z transformation for the given system $x(n) = a^{n+1} u(n+1) + b^{n} u(n-1)$
 - c) Find out the inverse Z transformation for the given response

H(z) =
$$\frac{1}{(1-3z^{-1})(1-2z^{-1})}$$
 for

- i) ROC: $|Z| \le 2$ ii) ROC: $|Z| \ge 3$ iii) ROC: $2 \le |Z| \le 3$ 4+6 3. a) if $X_1(Z)$ and $X_2(Z)$ are the Z transformation of sequences $X_1(Z)$ and $X_2(Z)$
- 3. a) if $X_1(Z)$ and $X_2(Z)$ are the Z transformation of sequences $x_1(n)$ and $x_2(n)$ respectively then prove that $Z\{x_1(n) * x_2(n)\} = X_1(Z) X_2(Z)$.
 - b) Find out the response of a system using graphical method whose impulse response is $h(n) = \{3,1,2,2\}$ and then excitation is $x(n) = \{1,2,1,2\}$
- c) What is ROC? Draw the ROC of a non causal infinite sequence. 2+3
- 4. a) Find out the 8-point DFT for the sequence, $x(n)=\{2,1,3,2,1\}$.
 - b) Find out the circular convolution for the system for $x(n) = \{2,1,2,3\}$ and $h(n) = \{1,1,2\}$ using concentric circle method.
- 5. a) Find out the linear convolution using overlap save method for the system which impulse response is $h(n) = \{2,2,1\}$ and which is excited by

	 x(n) = {2,1,1,2,1,3,2,1,2,1,1,2,1}. b) DFT is possible for all sequences- justify this argument whether it is true or not? 	1(e 5
	c) Check whether the given system is a LTI or not? $y(n)=x(n^2) + x(n-1)$	5
6.	a) Find out the 8-pointt DFT of the sequence $x(n) = \{1,2,1,2,3,2,1\}$ using radix-2 DIT-FFT algorithm.	15
	b) Why Z-transformation is known as many to one point mapping?	5
7.	y(n) = 0.65 y(n-1) + 0.25 y(n-2) + y(n) + 0.24 y(n)	4=20
	 a) Direct Form-I structure b) Direct Form-II structure c) Cascade Form d) Parallel Form e) Transpose Form 	