Bachelor of Information Technology 2nd Year 2nd Semester Examination 2017

Time 3 Hours

Subject - Mathematics IV (Modules 8 & 12) Full Marks 100

{Answer any ten questions}

- 1. i) Define independence of two events.
 - ii) State and Prove Bayes' theorem on conditional probability.
 - iii) Write down the expression of probability density function for Normal distribution. [2+6+2]
- 2. i) Can a function of the form

$$F(x) = \begin{cases} c\left(\frac{2}{3}\right)^x, & x = 1,2,3 \dots \\ 0, & elsewhere \end{cases}$$

be a probability mass function?

ii) Determine the value of the constant C such that f(x) defined by

$$f(x) = \begin{cases} Cx(1-x), & 0 < x < 1, \\ 0, & elsewhere \end{cases}$$

is a probability density function. Find the corresponding distribution function. [3+7]

3. i) The random variable X is uniformly distributed in (0, 1). Find the density function of $Y = -2 \log_e X$.

ii) Evaluate the variance of Poisson distribution. [4+6]

4. i) Let X be a random variable with probability distribution as follows:

$$x: 0 1 2 3$$

 $f(x): \frac{1}{3} \frac{1}{2} 0 \frac{1}{6}$
Find E[(X - 1)²].

- ii) Suppose that, for a discrete random variable X, E(X)=2 and E[X(X-4)]=5. Find the variance and standard deviation of (-4X+12). [5+5]
- 5. i) Define covariance between two random variables X and Y.
 - ii) Prove that $-1 \le \rho(X, Y) \le 1$, where $\rho(X, Y)$ is the correlation coefficient between two random variables X and Y. [3+7]
- 6. i) The random variables X, Y are connected by the linear relation 2X+3Y+4=0. Show that $\rho(X,Y)=-1$.
 - ii) If X be any continuous random variable having finite variance σ^2 (and hence having finite mean m), then for any $\epsilon>0$, prove that

$$P(|X - m| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$
 [4+6]

7. Define composite mapping. Let $f: R \to R$ defined by $f(x) = e^x$, $\forall x \in R$ and let $g: R \to R$ defined by $g(x) = \sin x$, $\forall x \in R$. Verify: $g \cdot f \neq f \cdot g$ and mention the range of f. [10]

- 8. State the principle of mathematical induction and prove that $n^3 + 5n$ is divisible by 6 for all $n \in \mathbb{N}$, by the principle of mathematical induction.
- 9. Are the two functions f and g equal? Give reasons. Where $f: D \to R$ defined by $f(x) = \sin x - \cos x$, $x \in D$ and $g: D \to R$ defined by $g(x) = \sqrt{(1 - \sin 2x)}$, $x \in D$ and $D = \{x \in R : 0 \le x \le \frac{\pi}{2}\}$. [10]
- 10. What is injective mapping and prove that the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \frac{|x|}{|x|+1}$, $x \in \mathbf{R}$ is neither injective nor surjective.
- 11. What is enumerable set, give an example and show that a relation on a set which is transitive but neither reflexive nor symmetric. [10]
- 12. Define an ordered set and prove that, in an ordered set (X, <) if a subset S has a supremum x^* , then x^* is unique.