JADAVPUR UNIVERSITY

B.E. INFORMATION TECHNOLOGY

1st Year, 2nd Semester Examination - 2017

DIGITAL LOGIC & DIGITAL CIRCUIT Time: 3 hours Full Marks: 100

General instructions (read carefully)

- 1. Special credit will be given to answers which are brief and to the point.
- 2. Answer to every question should start on a new page.
- Do not write answers to various parts of a question at different locations of your answer-script.
- 4. The final answer (numerical values with unit) should be <u>underlined</u> **or** enclosed within a box.
- 5. Do not write on the front back cover of your answer booklet.

Question No. 1 is compulsory. Answer any 4 (four) from the rest.

Each question carries 20 marks. Question for each sub-part is mentioned at the right margin of a part question or set of part questions.

- **1.** Answer <u>any 10 (ten)</u> of the following questions. Be specific and very brief in answering each question. (10 X 2)
 - i) What is (0.375)₁₀ in binary number system?
 - ii) What is the signed 2's complement representation of $(-15)_{10}$?
 - iii) If $(84)_x$ in base x number system is equal to $(64)_y$ in base y number system, then what are the possible values of x and y?
 - iv) Simplify A' ⊕ B'.
 - v) What is the max term corresponding to decimal 12?
 - vi) The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B. The number of combinations for which the output is logic 1 is ?
 - vii) The revamped Eden Gardens has a capacity of 66,349 spectators. We need to design a ripple counter using JK flip-flops to count the number of spectators attending a cricket match. How many such flip-flops are required?
 - viii) What is the effect of the CLEAR signal on the output of a JK flip-flop? Why is it called an overriding input?
 - ix) A 5 bit modulo 32 ripple counter uses D flip-flops. If the propagation delay of each flip-flop is 25 ns, what is the maximum clock frequency that can be used?

- x) A 4 bit synchronous counter uses flip-flops with propagation delay of 2 ns each. What is the maximum time required for change of state?
- xi) The present state, Q of an edge triggered JK flip-flop is logic 0. If J = 1, then what will be the next state Q^+ ?
- xii) Distinguish between volatile and non-volatile memory with examples.
- xiii) Which digital logic family has the highest speed? At the expense of what other parameter (any one)?
- xiv) In recent times, which digital logic family is most extensively used to build VLSI devices and why (any three points)?
- 2. i) Simplify the following functions using Karnaugh map, and design the circuit using basic fundamental gates. List the inventory required in the implementation. (2 X 7)
 - a) $F(A, B, C, D) = \sum m(1, 3, 4, 5, 9, 11, 14, 15) + \sum d(2, 6, 7, 8)$
 - b) $F(A, B, C, D) = \prod M(0, 1, 3, 8, 10, 15) . \prod d(11, 13, 14)$
- ii) Explain why we use Gray code instead of natural binary code while minimizing logic circuits using Karnaugh map. (2)
- iii) Distinguish between implicant, prime implicant and essential prime implicant. (3)
- iv) Which minimization method is used, when the number of variables is more than six ? (1)
- **3.** i) The multiplexer shown in Fig. 1 is a 4 x 1 multiplexer. What is the output Z in terms of A, B, C (after simplification using Boolean algebra)? (4)

- ii) Implement a 4-bit adder-subtractor using Full Adders. (4)
- iii) Implement the digital circuit of a full subtractor using (12)
 - a) only logic gates
 - b) 4 X 1 multiplexer
 - c) 3 to 8 decoder.
- 4. i) Design an asynchronous modulo 10 (decade) counter using JK flip-flops. (8)
- ii) Draw the circuit diagram of a JK master-slave flip-flop and explain its operation. How is racing avoided in such a flip-flop?

 (8)
- iii) Mention any two applications of flip-flops. (2)
- iv) Mention any two applications of shift registers. (2)

i) Consider the circuit in Fig. 2. What is the next state Q^+ in terms of P and Q? Hint: For all possible combinations of P and Q, make a table of S, R and Q^+ . Find how Q^+ is related to P and Q from the table.

ii) The counter shown in the Fig. 3 has initially $Q_2 Q_1 Q_0 = 0.0$. What will be the status of $Q_2 Q_1 Q_0$ after the first pulse?

iii) In the modulo 6 ripple counter shown in the Fig. 4, the output of the 2-input gate is used to clear the JK flip-flops. What gate is the 2-input gate ?

iv) For a shift register as shown in Fig. 5, X = 1011. With initially all the flip-flops cleared, what will be the value of ABC after 3 (three) clock pulses?

v) Fig. 6 is that of a ripple counter using positive edge triggered flip-flops. If the present state of the counters is $Q_2 \, Q_1 \, Q_0 = 0.1.1$, what will be the next state of $Q_2 \, Q_1 \, Q_0$?

- **6.** i) Draw and explain the generalized model of a state machine using D flip-flops. (6)
- ii) Implement an arbitrary sequence counter to count 1, 4, 3, 5, 2, 6 using the generalized model of a state machine using JK flip-flops. Draw the state graph / diagram, write the state table and transition table. Design the combinational / steering circuit. (14)
- **7.** i) Minimization of digital logic circuits results in reduced hardware. What are the benefits associated with reduced hardware in a digital system?
- ii) Draw the symbol, logical equation and truth table of a coincidence (or equivalence) gate.
- iii) What is DeMorgan's Theorem?
- iv) Design a 16 X 1 multiplexer using only 4 X 1 multiplexers.
- v) What are tri-state gates?
- vi) Draw the circuit diagram and write the characteristic table for S'R' latch using NAND gates.
- vii) How does PROM, PLA and PAL vary in terms of fixed and programmable AND and OR gate arrays?
- viii) Distinguish between ROM, EPROM, E²PROM and flash memory. (8 X 2.5)
- 8. Write short notes on (any five)

(5 X 4)

- i) Implementation of NOT, AND and OR function using any of the universal gates.
- ii) 3 (three) bit binary to gray code converter.
- iii) Full adder.
- iv) Excitation table and state diagram of a SR flip-flop.
- v) PLA (Programmable Logic Array).
- vi) Fan out.
- vii) Noise margin.

-----X ------