EX/FTBE/T/311/2017(S)

B.FTBE 3RD YEAR 1ST SEM SUPPLEMENTARY EXAM-2017

CHEMICAL ENGG.THERMODYNAMICS

Time: Three Hours

Full Marks: 100

Use Separate Answer Scripts for Part I and Part II

Part I (Marks-50)

Question No.1 is Compulsory and answer any two questions from rest

1. a) Find the expression of ΔU , ΔH , q and w for an isochoric process.

5

5

- b) Prove that the P-V diagram for adiabatic process is steeper than the isothermal process.
- 2. Prove that for a process $PV^n=C$ work done $w_{1-2}=(P_2V_2-P_1V_1)/(1-n)$.

A gas in a piston-cylinder assembly undergoes an expansion process from an initial pressure of 5 bar and initial volume of 1.0 m³ to a final volume of 2.0 m³. During the expansion process the relationship between pressure and volume is given by PVⁿ=Constant. Determine the work obtained if n=2.0 and n=0

10+5+5=20

3. Air at 1 bar and 298.15K is compressed to 5 bar and 298.15K by a mechanically reversible process: Cooling at constant pressure followed by heating at constant volume.

Draw the P-V diagram and calculate the heat and work requirements, ΔU and ΔH of air for each path. C_v =20.78, C_p =29.10 J/mol-K. Assume for air PV/T is a constant. At 298.15K and 1 bar molar volume of air is 0.02479 m³/mol.

- 4. a) Prove that for an isentropic process $T_2/T_1 = (P_2/P_1)^{(\gamma-1)/\gamma}$
- b) Methane gas at 550K and 5 bar undergoes a reversible adiabatic expansion to 1 bar. Assuming methane to be an ideal gas at these conditions determines the final temperature provided that γ for methane is 1.3.
- c) Prove that the triple point of water is invariant.

7+8+5=20

5. What are the assumptions of Raoult's law for VLE. What are the limitations of Raoult's law. What is bubble point and Dew point?

Imagine a subcooled mixture of 60 mol% acetonitrile and 40 mol% nitromethane existing in a piston/cylinder arrangement at 348.15kand 42kPa pressure. In a P-X-Y diagram show how the system can be represented? In the figure point out the bubble point and dew point. 3+3+4+10=20

EX/FTBE/T/311/2017(S)

B.FTBE. 3RD YEAR (1ST SEM.) SUPPLEMENTARY EXAMS, 2017

CHEMICAL ENGINEERING THERMODYNAMICS

Time: Three hours

Full Marks: 100

Use separate Answer Script for each Part

PART-II(50 Marks)

(Answer Any Four Questions. All Questions carry equal marks))

- 1. a.) What is the concept of the Absolute temperate in thermodynamics? (4)
- b.) What is the importance of Gibb's potential in understanding a process of thermodynamics? (4
- c.) Discuss the Zeroth Law and First Law of thermodynamics for ideal and non-ideal systems. (82/3)
- 2. a.) With a suitable example, explain what do you mean by Entropy in a thermodynamic process?
- b.) Discuss the concept of Heat Pump and its application in thermodynamics. (10 2/3)
- 3. Discuss what do mean by Carnot Cycle and Carnot Engine to determine heat input in a carnot engine operating between 300 deg centigrade and 20 deg centigrade. (16 2/3)
- 4. Discuss the application of P-V and T-s diagrams for determining thermodynamic equations relating to heat driven Motion Machines. (16 2/3)
- 5. With a suitable diagram, discuss the design principle of gas turbine including the applications of Otto Cycle and Diesel Cycle for determining its efficiency. (16 2/3)
- 6. Write short notes on (Any Four):
- a.) Energy and the threshold value.
- b.) Joule-Thomson effect
- c.) The compressor adds energy to the refrigerant
- d.) $C_{\mathbf{v}} C_{\mathbf{v}} = R$
- e.) Van der Wall equation.

0-1-1