BACHOLOR OF ENGNEERING IN FOOD TECFINOLOGY AND BIOCHEMICAL ENGG. EXAM - 2017

(2^{ND} YR. 2^{ND} SEM.)
MATHEMATICS-III
Time: Three hours
Full Marks: 100

GROUP-A

Answer any five questions

1. (a) Verify that the set of vectors $\vec{a}=(2,-1,2), \vec{b}=(1,3,-2), \vec{c}=(2,4,1)$ and $\vec{d}=$ $(5,3,-3)$ are linearly dependent or independent.
(b)Determine the value of γ and μ for which-the vectors $-3 \vec{i}+4 \vec{j}+7 \vec{k}$ and $\mu \vec{i}+$ $8 \vec{j}+6 \vec{k}$ are collinear.
(c).What is the Fundamental theorem of integral calculus?
(d)If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$, then show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar.
(e) Calculate the absolute, relative and percentage errors by approximating $\frac{4}{3}$ by 1.333
(f)Define rank of matrix.
(g) Prove that, $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$

GROUP-B

Answer any Nine questions
2. (a)Solve, $k \vec{r}+\vec{r} \times \vec{a}=\vec{b}$, where k is a non-zero scalar and \vec{a}, \vec{b} are two given vectors.
(b)Prove that $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$, under what condition $(\vec{b} \times \vec{c}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c}) ?$
3. (a)Expand by Laplace's method to evaluate $\left|\begin{array}{cccc}a & b & c & d \\ -b & a & d & -c \\ -c-d & a & b \\ -d & c & -b & a\end{array}\right|$
(b)If $A=\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right)$ find the value of $A^{2}-10 A+16 I_{3}$. Hence obtain $A^{-1} . \quad 6+4$
4. (a)Prove that the volume of the solid obtained by revolving the lemniscates $r^{2}=$ $a^{2} \cos 2 \theta$ about the initial line is $\frac{1}{2} \pi a^{3}\left\{\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)-\frac{1}{3}\right\}$. (b)A particle, acted on by constant forces $4 \vec{l}+\vec{\jmath}-3 \vec{k}$ and $3 \vec{l}+\vec{\jmath}-\vec{k}$, is displaced from the point $\vec{\imath}+2 \vec{\jmath}+3 \vec{k}$ to the point $5 \vec{t}+4 \vec{j}+\vec{k}$. Find the work done by the force on the particle.
5. (a) The smaller segment of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, cut off by the chord $\frac{x}{a}+\frac{y}{b}=1$ revolves completely about this chord, find the volume of the solid spindle thus generated.
(b)Soive by Cramer's rule $x+y+z=1$, $a x+b y+c z=1, a^{2} x+b^{2} y+c^{2} z=$ $1, a \neq b \neq c$ $6+4$
6. (a) Given two vectors $\vec{\alpha}=\vec{\imath}+2 \vec{\jmath}-\vec{k}, \vec{\beta}=2 \vec{\imath}-\vec{\jmath}+\vec{k}$; find the vector $\vec{\gamma}$ and the scalar λ which satisfy $\vec{\alpha} \times \vec{\gamma}=\vec{\beta}+\lambda \vec{\alpha}$ and $\vec{\alpha} \cdot \vec{\gamma}=2$.
(b) Show that $\iint_{R} \sqrt{4 a^{2}-x^{2}-y^{2}} d x d y=\frac{4}{9}(3 \pi-4) a^{3}$
7. (a)Show that the matrix $\left(\begin{array}{lll}2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & 3\end{array}\right)$ is non-singular and express it as a product of elementary matrices.
(b) show that $\left[\begin{array}{lll}\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]\end{array}\right.$
8. Obtain the fully reduced normal form of the matrix $\left(\begin{array}{ccccc}0 & 0 & 1 & 2 & 1 \\ 1 & 3 & 1 & 0 & 3 \\ 2 & 6 & 4 & 2 & 8 \\ 3 & 9 & 4 & 2 & 10 \\ 4 & 12 & 4 & 5 & 11 \\ 5 & 15 & 5 & 0 & 16\end{array}\right)$.
9. (a) Solve the following system of equations

$$
\begin{gathered}
x+y+z=6 \\
3 x+(3+\epsilon) y+4 z=20 \\
2 x+y+3 z=13
\end{gathered}
$$

using the Gauss elimination method, where \in is small such that $1 \pm \epsilon^{2} \cong 1$.
(b)Prove that, $\Delta . \nabla=\Delta-\nabla=\nabla \cdot \Delta$
10. (a) Find the missing term in the following table:

$\mathrm{X}:$	0	1	2	3	4	5
$\mathrm{~F}(\mathrm{x})$	0	-	8	15	-	35

(b) What is the advantage's of Lagrange's formula for interpolation?
$7+3$
11. Compute by Simpsons one third rule $\int_{1.2}^{1.6}\left(x+\frac{1}{x}\right) d x$ correct to two significant figures, taking four intervals and compare the result with the actual value of the integral.
12. The following values of the function $f(x)$ for value of x are given: $f(1)=4, f(2)=$ $5, f(8)=4, f(9)=3$ and $f(10)=2$. Find the values of $f(6)$ and also the value of x for which $f(x)$ is maximum or minimunn.
13. (i) $\int_{0}^{\pi} \frac{x d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}$
(ii) $\int \frac{d x}{\left(x^{3}+1\right)(x+2)}$

