

BACHELOR OF Engineering (FTBE)SUPPLEMENTARY EXAMINATION, 2017

(1ST Year,1ST Semestar)

PHYSICAL CHEMISTRY

Time: Three Hours

Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

PART-I

Answer Question number 1 and any three from the rest

1. Defi	ne the following terms (any three) :	3x4 = 12
(i)	Entropy	•
(ii)	Isomorphism in crystals	
(iii)	Enthalpy	
iv)	Unit cell in crystalline solids	
(v)	Internal energy	
vi)	Gibbs free energy	
(Vii)	Ideal solution	
2.a) Ef	ficiency of Carnot heat engine $h = T_1 - T_2/T_1$, where	here $\mathbf{T_1}$ and $\mathbf{T_2}$ are the temperature of source and sink
respectively.		7
b) For	isothermal reversible expansion of one mole of a	an ideal gas at 300 K from 2 litres to 20 litres, what is the
work d	one?	5
3.a)Define thermodynamic systems with examples .		. 7
b) The	boiling point of a liquid at 1 atm is 323K and he	at of vaporization is 17 KJmol ⁻¹ . Calculate the pressure of
	zation of liquid at 298K.	5
		solute dissolved in a solvent at constant temperature and
pressure.		7
b) A ne	at engine operating between 100°C (source) and	50°C(sink). What is the efficiency of the engine? 5
5. a)Derive Duhem-Margules equation for two component system.		
b) A sa	mple of gas initially at 25°C is compressed from	25 litres to 5 litres adiabatically and reversibly. Calculate the
final temperature ($C_v = 2$ cal mol ⁻¹).		5
6. a) Define crystalline solids and amorphous solids?		5
b) What is Bravais lattices in a crystal system?		3
c) Define atomic heat of solids.		2

B. FTBE 1st Year 1st Sem Supplementary Exam- 2017

Physical Chemistry

Full marks: 50

Part - II

Instructions: Use separate answer scripts for Part-II questions

Answer Q.1 and any two from the rest

1. Write short notes on: (Answer any four):

 $4 \times 4^{1}/_{2} = 18$

- i. Boyle's Law
- ii. Ideal gas equation
- iii. Hydrogen bonding
- iv. Colligative properties
- v. Dispersed phase and dispersion medium
- vi. Faraday-Tyndall Phenomenon
- 2 (a) Draw representative curves for an isotherm, an isobar and an isochore.
- (b) Write down four important assumptions of Kinetic Molecular Theory for discussing the behavior of ideal gases.
- (c) Two vessels separately contain two ideal gases A and B at the same temperature. The pressure of A is twice that of B. Under these conditions, density of A is found to be 1.5 times the density of B. Find the ratio between the molecular weights of A and B.
- (d) Write down the vander Waal's Equation of state for n moles of a real gas. Define all the terms involved in this particular equation.

$$4+4+4+4=16$$

- 3(a) From our daily life, provide examples of two different phenomenon, which works on the basis of surface tension. Mention four important factors which influence the surface tension of a liquid.
- (b) Write down the equation for Stoke's law and define the terms involved.

- (c) What do you mean by velocity gradient? Write down the dimension and unit of velocity gradient.
- (d) Provide one example for each category of the solutions mentioned below:
- (i) a solution of a gas (solute) in a liquid (solvent)
- (ii) a solution of a solid (solute) in a liquid (solvent)
- (iii) a solution of a solid (solute) in a gas (solvent)
- (iv) a solution of a liquid (solute) in a liquid (solvent)

$$(2+2) + (2+2) + (2+1+1) + (1+1+1+1) = 16$$

- 4(a) Provide one example for each category of the colloidal solutions mentioned below:
 - (i) Where dispersed phase is solid and dispersion medium is liquid
 - (ii) Where dispersed phase is solid and dispersion medium is gas
 - (iii) Where dispersed phase is liquid and dispersion medium is liquid
 - (iv) Where dispersed phase is liquid and dispersion medium is gas
- (b) 30 gm of urea is dissolved in water to produce a 2 lit. aqueous urea solution. The molar mass of urea is 60 gm per mole. Determine the concentration of the solution in % weight/volume and calculate the molarity of the solution.
- (c) Suppose two volatile liquids A and B are mixed to prepare a solution which behaves ideally. Write down the expression of the total vapor pressure (P_{soln}) of the resulting solution using Raoult's Law and explain the terms involved. Provide two examples where this equation is maintained.
- (d) What will be the boiling point of:
- (i) 4 molal aqueous glucose solution
- (ii) 4 molal aqueous NaCl solution.

Given boiling point of pure water is 100°C, molal elevation constant of water is 0.5°C molal⁻¹ and van't Hoff factor (i) for NaCl is 2

$$(1+1+1+1) + (2+2) + (2+2) + (2+2) = 16$$