[Turn over

B. ETCE. ENGG. EXAMINATION 2017

4th Year, 2nd Semester (Old)

ELECTRON DEVICE III

Full Marks: 100 Time: Three hours

The figures in the margin indicate full marks.

Answer any five questions.

(All parts of the same question must be answered together)

(a)	Describe the scheme for finding out energy states for an electron confined in a	12
	rectangular potential well of finite barrier height.	
(b)	Verify whether the above analysis yields correct results in the case of	4+4
	(i) an infinite potential well	
	(ii) a free electron.	
2.(a)	Prove that the density of states function $D(E) \propto E^{(N-2)/2}$, for system dimension $N =$	15
J.(u)	3, 2 and 1.	, 10
(b)	Determine the carrier concentration in a 2D system.	5
3.(a)	Illustrate a scheme to find out the energies of an electron confined in a multi-	15
	layered heterostructure, for which the potential energy variation is given as:	
	$V(z)=0$ for $0 \le z \le a$ and $b \le z \le c$, and	
	$V(z) = V_0$ for $z < 0$, $a < z < b$ and $z > c$, where $0 < a < b < c$.	
(b)	Determine the number of bound electronic states in a GaAs QW of width 30 nm	5
	and depth 0.25 eV. Assume $m_n^* = 0.067 m_0$ for GaAs.	

4.(a)	With appropriate diagram, describe how various delays appear in switching operation of a BJT. Discuss how these delays can be minimized.	8+6
(b)	Explain how a <i>HBT</i> can eliminate the above problems and provide high gain, high speed.	6
5.(a)	What is Modulation doping? How does it help to enhance the mobility of carriers in a semiconductor? What is the significance of the spacer layer?	12
(b)	Describe the structure of an <i>FET</i> based on the above principle. Mention one of its important applications.	8
6.(a)	What is Resonant tunneling? Why it is so named?	3+1
(b)	With the help of energy band diagram, establish the characteristic of a RTD. What is the figure of merit of such diode and how can it be improved?	7+5
(c)		4
7.(a)	What is Exciton? Describe how excitons in a 2D system may survive in presence of an external electric field.	3+5
(b)	What is Quantum Confined Stark Effect (QCSE)? Explain how this effect is utilized in the operation of an optical switch.	3+9
8.	Write notes on:	, 10+10
(a)	Superlattice	
(b)	Single Electron Charging	

έ,