Ref. No.: Ex/ET/T/321/2017

B. ETCE 3RD YEAR 2ND SEMESTER EXAMINATION-2017

Subject: IC DESIGN

Time: 3 Hours

Full Marks: 100

All parts of the same question must be answered at one place only Model parameters for NMOS and PMOS device

Parameters	NMOS	PMOS
L _{min}	180nm	180nm
\mathbf{W}_{min}	240nm	240nm
V _{th}	0.7V	-0.8V
λ (V·1)	0.1	0.2
μ (cm²/Vs)	350	100
$C_{ox}(fF/\mu m^2)$	6	6

PART-I

1. Answer any Five Questions:

- [Marks: 5×8=40]
- A) What is body effect? How does it influence the threshold voltage of a MOS transistor?
- B) What is channel length modulation effect? How the voltage current characteristics are affected because of this effect?
- C) What is trans-conductance of a MOS transistor? Explain its role in the operation of the transistor.
- D) Draw the ideal characteristics of a CMOS inverter and explain the different parts of the characteristic based on the operation point of those MOSFETs
- E) What is the inversion voltage of an inverter? Find out the expression of the inversion voltage of a CMOS inverter.
- F) Explain why the structures shown below cannot operate as a current source even though the transistors are in saturation.

Figure 1

PART-II (Answer any Three)

2. Find the gain expressions of the amplifier circuits shown below.

[Marks: $2 \times 10 = 20$]

A) Consider $\lambda \neq 0$ and $\eta \neq 0$.

Figure 2

B) Consider $\lambda \neq 0$ and $\eta = 0$.

Figure 3

3. A) Design one cascode current mirror with output resistance not less than 1 M Ω . Find the maximum voltage variation at the output node of the current mirror. [Marks: 13+2=15] B) Sketch V_X and V_Y as a function of V_{DD} for the circuit shown below. Assume the transistors in the circuit are identical. [Marks: 5]

Figure 4

4. Find I_X vs V_X plot of the circuit shown below. Where V_X is varied from 0V to 3V (Consider supply voltage $V_{dd}=3V$)

[Marks: $2\times10=20$]

A)

B)

5. Find the Voltage V_x plot of the circuit with respect to time. (Consider zero charge on the capacitor at t=0). [Marks: $2\times10=20$]

Figure 7

6. Design a cascode amplifier (as shown below) with PMOS active load for a voltage gain more than 10000. (Supply voltage to the circuit is 1.8V) [Marks: 20]

Figure 8