Ref: EX/ET/T/313/2017(s)

BETCE Third Year Examination

First Semester - 2016-2017

Subject: Digital Communication System

Time: Three hours

part)

Full Marks: 100 (50 marks for each

Use Separate Answer Script for each part Part –I

Answer must be written at one place for each question Answer question No. 1 and any two from the rest

- Q.1 (a) Considering a 3D vector space, draw the analogy between vector and signal. Define the completeness of the vector. From this concept define orthogonality of signal.
- (b) How are signals geometrically represented? What is the significance of such representation? From this representation, show that set of signal vectors may be defined in N-dimensional Eucledian spaces for M sets of points on $\{s_i\}$ with mutually perpendicular axes ϕ_1 , ϕ_2 , ϕ_3 ,...... ϕ_N .
- Q.2 (a) What is the purpose of Gram-Schmidt orthogonalization procedure? Show that Gram-Schmidt procedure, set of basis fn, $\{\phi_i(t)\}$ are orthonormal set. 10
- (b) Apply Gram-Schmidt procedure for the set of signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ in terms of orthonormal set of functions. Construct the signal constellation for $s_1(t)$, $s_2(t)$ and $s_3(t)$.

- Q.3 (a) Explain the BPSK (Binary Phase shift Keying) modulation scheme with pictorial representation. Draw the signal constellation diagram for this modulation. Explain the demodulation scheme of BPSK.
- (b) Obtain the power spectral density of BPSK modulated signal. From that find the spectral bandwidth required for BPSK modulation.
- Q.4. (a) What is the M-ary modulation scheme? Explain briefly one case of the M-ary amplitude modulation scheme.
- (b) Show that M-ary modulation is always bandwidth efficient. What is the cost incurred to achieve this bandwidth efficiency.
- (c) The input binary data stream 01101000 is transmitted using QPSK modulation. Show the even and odd bit streams and draw the waveforms representing the two components of QPSK signals s_{i1} $\phi_1(t)$ and s_{i2} $\phi_2(t)$. Obtain the QPSK modulated wave from these two waveforms and highlight the phase change points.
- Q.5. Write short notes on the followings

2x10=20

- (a) Delta Modulation and granular noise, slope overload noise
- (b) MSK -modulation and power spectra of MSK

6

B. ETCE 3RD YEAR 1ST SEMESTER SUPPLEMENTARY EXAMINATION 2017

DIGITAL COMMUNICATION SYSTEMS Time: Three Hours Full Marks: 100

50 Marks for each Part Use separate Answer-script for each Part

Part - II

Answer Q. No. 6 and any Two from the rest

- 6. Consider a data stream 1001101101. Sketch the electrical waveforms for the above data in 5 X 2
 - Return to Zero signalling
 - ii) On-off signalling
 - iii) Polar signalling
 - iv) Bipolar signalling
 - v) Manchester signalling
- 7. a) What are the characteristics of DMS? How the amount of information is measured? What do you mean by entropy? 3 + 3 + 4
 - b) Discuss about the curve for the average information for two messages where the probability of occurrence of one message is p. Calculate also the maximum value of information.
 7 + 3
- 8. a) Write down the steps for the generation of Huffman code.
 - b) A DMS is transmitting the messages A, B, C, D and E with probabilities of occurrences of 1/16, 1/8, 1/4, 1/16 and 1/2. Construct the Huffman code.

- c) Determine the average codeword length, variance of the average codeword length, entropy of the DMS and coding efficiency. 4 X 2
- 9. a) Discuss about the Four properties of Mutual Information. 4 X 3
 - b) Draw the diagram illustrating the relations among various channel parameters. 8
- 10. Write short notes on any **Two** of the following: 10 + 10
 - a) Channel Matrix
 - b) Extension of DMS
 - c) Binary Symmetric Channel
 - d) Joint and Marginal probability distributions