BACHELOR OF ELECTRONICS & TELE-COMMUNICATION ENGG EXAMINATION, 2017 (3rd Year, 2nd Semester)

Systems Software

Time: 3 hours Full Marks: 100

Answer Question No.1 and any four from the rest.

- (a) Construct a DFA for ∑ = {a, b, c}, that accepts any string with aab as a substring. Explain each step of its construction.
 - (b) Draw the flowchart of a pushdown automaton (PDA) that accepts the language $\{0^{2n} 1^n \mid n > 0\}$ and explain. Give two examples, one for acceptance and the other for rejection by the PDA.
- (a) Construct a DFA for the following NFA and hence write a program in C 10 language to simulate the DFA.

(b) Derive a regular expression for the following FA.

[Turn over

04

(c) Minimize the states of the following DFA and show the result in the form of a

3. Consider the following grammar

 $S \rightarrow AB$

 $A \rightarrow Ca \mid \epsilon$

 $B \rightarrow BaAC \mid c$

 $C \to b \mid \, \epsilon$

- (a) Eliminate left recursion from the above grammar.
- (b) Draw the transition diagrams and hence write mutually recursive procedures 10 for the above grammar to implement a non back tracking recursive descent parser.

4

- (c) Parse the string w: bacaab using the parser that you have constructed. Give the 6 sequence of calls and draw the parse tree accordingly.
- 4. Consider the following grammar G

$$E \rightarrow 5+T \mid 3-T$$

$$T \rightarrow V \mid V^*V \mid V^+V$$

$$V \rightarrow a \mid b$$

Construct a predictive parsing table for G and hence write a driver routine to

14+6
design a parser. Show the moves of the parsing of the string w: 5+a*b using
the predictive parsing method and obtain the left most derivation for the same.

Show the corresponding parse tree also.

(a) Generate 3-address code corresponding to the program fragment given below.
 Each time a temporary variable is needed, use a new temporary. Do not perform any optimization.

```
while(A<C and B>D) do
if A = 1 then C = C+1
else
while A<= D do
A = A+3
```

- (b) Identify the leaders and hence the basic blocks in the TAC for part (a) above 6 and draw the corresponding flow graph.
- (c) Discuss different representations of three address code and compare them.
- 6. (a) Rewrite the basic block given below in single assignment form and then

 4+4

 draw the data flow graph (DFG) for that form. Obtain the assembly code from the DFG for a hypothetical machine.

a = q - r; b = a + t; a = r + s; c = t - u;

(b) Draw the life-time graph for the basic block given in part(a) and hence determine the minimum number of registers required to perform the operations.

5

7

(c) Explain different loop optimization techniques with suitable examples.

- 7. Write notes on the following:
 - (i)
 - Bootstrapping Syntax directed translation Ambiguous grammar Shift reduce parser (ii)
 - (iii)
 - (iv)

End of question

4 * 5