B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR SECOND SEMESTER EXAM, 2017

ANALOG CIRCUITS- II

Time: Three hours

Full Marks: 100

Use a separate Answer-Script for each Part

PART-I

Answer Q.1, any four from the rest

[10+4×15=70]

1. Answer any five from the following:

 $[5 \times 2 = 10]$

- a) Why is the biasing of EMOSFET different from DMOSFET?
- b) Write the advantages of RC coupling over transformer coupling.
- c) In which frequency range tuned amplifiers are used? Explain.
- d) Why is the 2nd order harmonic distortion important in an amplifier?
- e) Define line regulation of voltage regulator.
- f) Define quality factor (Q) and skirt selectivity (S) of tuned amplifier.
- g) Define free running frequency of phase locked loop.
- 2. a) Find the overall voltage gain in dB of the amplifier (Fig.1). Briefly explain how can maximum voltage gain be obtained from the amplifier.
 - b) If a transformer coupled loudspeaker (16 Ω) is used as load, find the primary to secondary turns ratio of the transformer output impedance of Q_2 is 10 k Ω .
 - c) Why does transformer coupling give poor frequency response?

[8+2+2+3]

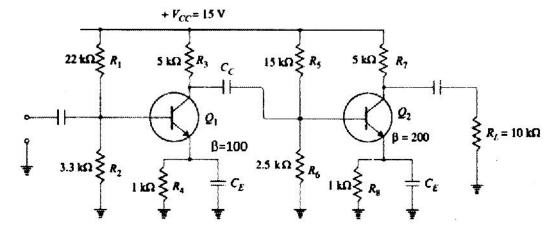


Figure 1

- 3. a) What do you mean by nonlinear distortion in a transistor amplifier? If the dynamic characteristic is given by a parabolic form $(A_0x+B_0x^2)$ and input is a pure sinusoid, how will the output be modified? Derive the form of 2^{nd} order harmonic distortion. [2+4+3]
 - b) In an amplifier, fig. 2, the output current $I_Y = (35 + 17\cos w_o t + 10\cos 2w_o t + 0.3\cos 3w_o t)$ mA. (i) Total distortion D, (ii) Total power delivered to the load of 2.2 K Ω and (iii) power delivered to the load for fundamental frequency. [6]

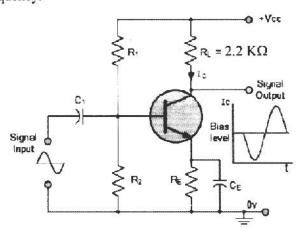


Figure 2

4. a) Define class C power amplifier. Explain the purpose of tuned circuit in class C amplifier.

[2+3]

b) In a class C amplifier (Fig.3), tuned circuit at the collector consists of inductor of value 20 μ H and capacitor of 1 μ F. The transistor is ON for 1 μ s. Icsat=100 mA, V_{CEsat} = 0.2 V. R_L =100 Ω . Determine the efficiency. If an input signal of 1 kHz is used, determine the value of the inductor and efficiency. Comment on it.

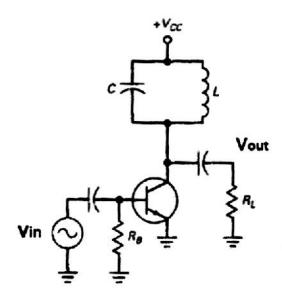


Figure 3

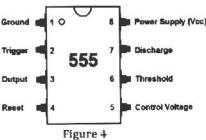
5. a) Give the analysis of step up switching voltage regulator and determine the power efficiency.

[8]

b) Explain the operation of LM317.

- [4]
- c) In an IC adjustable linear positive voltage regulator $V_{outmax} = 37 \text{ V}$, $I_{adj} = 50 \mu A$ and $R_1 = 200\Omega$. Calculate the maximum value of R_2 .
- a) Explain with circuit diagram the operation of single tuned amplifier. Draw its ac equivalent circuit and calculate voltage gain.
 - b) Draw and explain the normalized gain vs. frequency curve of double tuned amplifier for different coupling co-efficient. [5]

7. Short note [3×5=15]


- a) Lock -in range and capture range of PLL
- b) Shunt voltage regulator
- c) Cross over distortion

PART-II

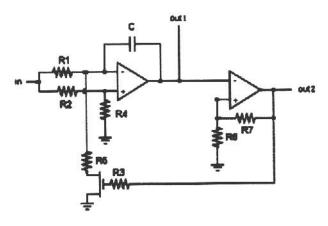
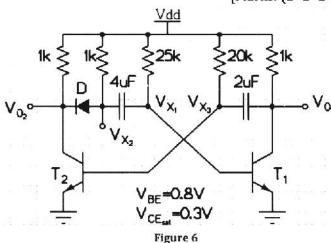
Answer any 2 (Two) from the followings: $(15\times2=30)$

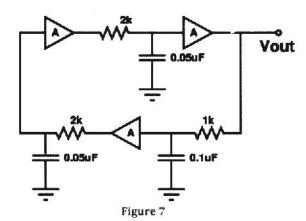
8. Pin diagram of an IC Timer 555 is given below. Draw the **Internal Architecture** of the IC.

[Marks:5]

Using 555 **Implement** a monostable multivibrator and plot the following waveforms with explanations: $V_{Trigger}$, V_{Cap} , $V_{ff-Reset}$ and V_{Gut} . Find the value of external components so that the unstable state sustains for 1msec. (Assume the SR flip-flop used in the IC is a positive edge trigger FF and the IC is using a 5V supply voltage) [Marks: 3+5+2]

9. Explain the working principle of the voltage controlled oscillator shown in Figure 5. Derive the expression for T_L and T_H . Find the condition for 50% duty cycle. If the input voltage to the circuit is 4V and the supply voltage of each Op-amp is $\pm 12V$ plot V_{Cap} (voltage across the capacitor), V_{Out1} and V_{Out2} with respect to time. [Marks: 4+(2+2)+1+(2x3)=15]


Figure 5

10. A) An astable multivibrator circuit is modified as shown in the figure 6. Assume the diode shown in the figure is ideal. Plot waveforms V_{01} , V_{02} , V_{x1} and V_{x2} with respect to time (use proper labels, shapes and maintain approximate visualization of duty cycle and voltage values in your plot). Calculate the **time period** and **duty cycle** of the output waveform V_{02} .

[Marks: (2+2+2+2)+(1+1)=8]

B) For the circuit shown below determine the **oscillation frequency** and **amplifier gain** for sustained oscillation. (Amplifiers are ideal and identical) [Marks: 5]

