Ref. No.: EX/ET/T/215/2017(4)

B. ETCE 2ND YEAR 1ST SEMESTER SUPPLEMENTARY EXAMINATION 2017

Subject: ANALOG CIRCUITS-I

Time: 3 Hours

Full Marks: 100

All parts of the same question must be answered at one place only
Use separate answer script for each PART

PART-I

(Answer any Five Questions)

- 1. Explain the working principle of a voltage multiplier with proper circuit diagram. [Marks: 10]
- 2. Explain the working principle of a half wave rectifier. Find V_{dc} , V_{rms} and efficiency(η) of a half wave rectifier. [Marks: 10]
- 3. Find the output voltage V_0 of the diode circuit shown below and **plot** the output voltage for a temperature range 0 to 100° C. [All diodes are real and identical] [Marks: 6+4=10]

- 4. A) Draw the output waveform of the circuit shown below. ($V_{B1}=2V$, $V_{B2}=3V$ and diodes are real)
 - B) Determine the minimum or maximum value of V_{B1} and V_{B2} to avoid the clipping of output waveform.

 [Marks: 6+4=10]

- 5. Determine the expression of stability factor S(Ico) for a voltage divider network. [Marks: 10]
- **6.** Explain the function of a current mirror circuit. Design one current mirror with $1\mu A$ current in primary branch and $0.75 \,\mu A$ in secondary branch. (Available transistors are identical with β =1000 and V_{BE} =0.7V. Supply voltage 3V)

- 7. One CE amplifier with proper biasing arrangement is shown below. Find the following parameters: $[\beta = 100, C_E = C_C = C_B = 1 \, \mu F \, and \, neglect \, r_o]$
 - A) All low frequency poles and zeros due to coupling capacitor and lower cut-off frequency.
 - B) Gain versus frequency plot (for very low to mid frequency range)

[Marks: 7+3=10]

Ref. No.: EX/ET/T/215/2017(S)

B. ETCE 2ND YEAR 1ST SEMESTER SUPPLEMENTARY EXAMINATION-2017

Subject: ANALOG CIRCUITS - I

Time: 3 Hours

Full Marks: 100

PART-II

Answer any FIVE.

All parts of the same question must be answered at one place only.

1. Explain the operation of an n-channel JFET.

10

2. Determine V_D .

10

3. Find v_0/v_{sig} and R_{in} of the following circuit with $g_m=1$ mA/V, $r_0=100$ k Ω , $R_L=10$ k Ω , $R_1=500$ k Ω , $R_2=1$ M Ω .

4. Determine the feedback configuration of the following circuit and hence quantitatively explain how the feedback connection helps in improving the behavior of the circuit as an ideal source.

10

- 5. Explain how a differential amplifier with active load and Wilson current mirror can achieve a near ideal value of CMRR.
- 6. Assume that R_5 and R_6 of the following circuit are much smaller than R so that the current through R is much lower than the current in the voltage divider, so that $\beta = R_6/(R_5 + R_6)$. Show that the differential gain is given by $A_d = 1/(1-\beta)$. Also design the circuit to obtain $A_d = 10$, $R_{id} = 2 \text{ M}\Omega$ by selecting R, R_5 and R_6 such that $(R_5 + R_6) \leq R/100$.

7. Explain the operation of a monostable multivibrator.

10

10

10