Ref. No.: Ex/ET/T/121/2017

B.E. ELECTRONICS AND TELECOMMUNICATION ENGINEERING FIRST YEAR SECOND SEMESTER 2017

Subject: CIRCUIT THEORY

Time: 3 Hours

Full Marks: 100

All parts of the same question must be answered at one place only Use separate answer scripts for each PART.

PART – I Answer any FIVE.

1. Derive the fundamental tie-set matrix of the following circuit in Fig. 1 and hence obtain the branch voltages.

10

2. Determine the values of the components L and R of Fig. 2 so that the amplitude of the direct component of $v_o(t) \ge 90$ V and the ripple $\le 4\%$ for the fundamental frequency of 60 Hz.

Fig. 2

10

3. Find the Fourier series expansion of current i(t) of the circuit in Fig. 3 under steady state. Also, express the power dissipated in the circuit as a sum of harmonic powers.

Fig. 3

10

4. What would be the energy dissipated in the 1- Ω resistor in Fig. 4, 'a' being a real positive constant.

10

5. Based on the behavior of the system F described by Fig. 5(a), determine the output of the system given in Fig. 5(b). Here $X(-j\omega)$ is the Fourier transform of the signal x(t).

6. Determine i(t) of the circuit in Fig. 6 for t > 0.

7. Determine the transient and the steady state current i(t) of the network in Fig. 7 with $i(0^-)=\rho$.

8. Determine the voltages across the inductors of the circuit in Fig. 8 over time.

9. Show that the circuit in Fig. 9 is resonant at supply frequency.

10

10. The Q-factor of a series RLC circuit is 5 at its resonance frequency of 1 kHz. Assuming the power dissipation of 250 Watt across resistance when the current drawn is 1 amp, find the circuit parameters and the bandwidth of the circuit.

Part-II Answer any FIVE questions

Find the Z parameters of the network shown in Figure 1. Comment on reciprocal and symmetrical property of the network. [Marks: 8+1+1]

2. A) Determine the image impedance Z_{i1} & Z_{i2} of the T network shown below.

[Marks: 5]

Figure 2

B) Find the Thevenin equivalence of the circuit shown in Figure 3.

[Marks: 5]

Figure 3

3. Determine the current I_L flowing through the 5k resistive branch.

[Marks: 10]

Figure 4

4. Find the **equivalent inductance** of the combination of inductors shown below. (Coupling Coefficient = 0.5)

[Marks: 10]

Figure 5

5. Determine the **ABCD matrix** of the network shown in Figure 6. Using those ABCD parameters find the **Z parameters** of the same network. [Marks: 5+5]

Figure 6

6. Obtain the loop current I_1 and I_2 of the network shown in Figure 7. (Mutual inductance M=2H and the RMS value of the applied voltage source is 100V) [Marks: 10]

Figure 7

7. For the circuit shown in Figure 8, determine the value of V_2 such that (a) the current through $(3+j4)\Omega$ impedance is zero and (b) the current through 5Ω resistance is zero. [Marks: 5+5]

Figure 8