## Bachelor of Electronics & Telecommunication Engineering Examination – 2017

(1<sup>st</sup> Year, 2<sup>nd</sup> Semester) Physics – IIB

Time:3 hours Full Marks: 100

## Answer any five questions

- 1 a) What are Newton's rings? Obtain the conditions for bright and dark fringes in case of Newton's ring experiment. Why are the fringes circular?
- b) Using Newton's ring how you can determine (i) wavelength of an unknown monochromatic light; (ii) refractive index of an unknown liquid.
- c) In a Newton ring experiment the diameter of the 15<sup>th</sup> ring was found to be 0.59 cm and that of the 5<sup>th</sup> ring was 0.336 cm. If the radius of the plano-convex lens is 100 cm, calculate the wavelength of the light used. (8+8+4)
- 2 a) Write the conditions for sustained interference of light. Do you think energy conservation principle is valid in interference? If yes, explain how?
- b) Describe Young's experiment and derive expressions for (i) intensity at a point in the screen and also for (ii) fringe width. Mention the conditions for observing distinct and larger fringe width.
- c) A light source emits light of two wavelengths 4300 Å and 5100 Å. The source is used in a double slit experiment. The distance between the source and the screen is 1.5 m and the distance between the slits is 0.025 mm. Calculate the separation between the third order bright fringes due to these two wavelengths.

  (5+10+5)
- 3. (a) What is a plane transmission grating? What are replica grating?

Obtain the conditions for observing the maxima and minima in a grating spectrum.

- (b) Discuss how you can use a grating for determining the wavelength of an unknown light. What are the differences between a grating spectrum and prism spectrum?
- (c) Explain the term dispersive power of a grating. On what parameters does it depend?
- (d) Calculate the possible order of spectra with a plane transmission grating having 18,000 lines per inch when light of wavelength 4500 Å is used. (8 + 4 + 4 + 4)

(4)

- (a) What do you mean by the term 'square integrability' of a quantum mechanical wave function.
- (b) Consider  $|\psi(t)\rangle$  is a state vector of a system. Let the position and momentum space wave function be  $\psi(x,t)$  and  $\phi(p,t)$  respectively. Write down the expression connecting  $\psi(x,t)$  and  $\phi(p,t)$ .
- (c) Consider a thermal neutron at room temperature. What is the ratio of a particle's compton and De-Broglie wavelength.
- (d) State Ehrenfest's theorem and prove any one of the following:

  - (i)  $\frac{d}{dt} < \hat{x} > = \frac{\langle \hat{P}_x \rangle}{m}$ (ii)  $\frac{d}{dt} < \hat{P}_x > = \langle F_x \rangle$
- (c) Show that if  $\Psi$  be an eigenfunction of an operator  $\hat{A}$  with a eigenvalue  $\lambda$  then it also an eigenfunction of  $e^{\hat{A}}$  with eigenvalue  $e^{\lambda}$ .
- (f) Evaluate  $[\hat{x}, \sin \hat{p_x}]$ .

[2+2+4+5+3+4]

(5)

- (a) What is tunneling? A rectangular potential barrier of height  $V_0$  extends from x=0 to x=a. Prove that for a particle of energy  $E < V_0$  , the transmission coefficient through the barrier is given by  $T = \left[1 + \frac{V_0^2}{4E(V_0 - E)}\sinh^2\beta a\right] \text{ where } \beta^2 = \frac{2m}{\hbar^2}(V_0 - E).$
- (b) Experimental data indicate that the highest energy of an electron ( $\beta$  particle) emitted from a radioactive substance does not exceed 4Mev. If size of a nucleus is  $\sim 10^{-15} m$  then show that electrons can not reside within the nucleus.
- (c) Calculate the normalisation constant for a wave function given by  $\psi(x) = A \exp\left(-\frac{\sigma^2 x^2}{2}\right) \exp\left(ikx\right)$ . Also determine the probability density  $\rho$  and the probability current density J.

[(1+8)+5+6]

(6)

- (a) The potential energy of a harmonic oscillator of mass m is  $V(x) = \frac{1}{2}m\omega^2x^2$  where  $\omega$  is the angular frequency.
  - (i) Write the time independent Schrodinger equation for a simple harmonic oscillator.
  - (ii) The eigenfunction of the Hermitian operator for the ground state is  $\psi_0 = ((\frac{\alpha}{\pi})^{1/4} \exp(-\frac{\alpha x^2}{2}))$  where  $\alpha = \frac{m\omega}{h}$ . Calculate the energy eigenvalue in the ground state
  - (iii) Show that the existance of zero point energy of a linear harmonic oscillator is consistent with Heisenberg uncertainty principle.
  - (iv) Also find the average Kinetic energy and potential energy in the ground state.
  - (v) Further prove that it satisfy minimum uncertainty relation  $\langle \delta x \rangle \langle \delta p \rangle \sim \frac{\hbar}{2}$

$$[1+4+4+6+5]$$