Bachelor of Engineering in Tele-communication Engineering Examination, 2017

(1st Year, 2nd Semester)

Mathematics - IIIG
Time : Three hours
Full Marks: 100
(50 marks for each part)
Use a separate Answer-Script for each part
(Unexplained Notations and symbols have their usual meanings)
PART - I
Answer any five questions :

1. a) Suppose X is a nonempty set and F is a field. Suppose Map (X, F) denotes the set of all maps from X to F.
a) Prove that $\operatorname{Map}(\mathrm{X}, \mathrm{F})$ is a vector space over F where the operations are defined as follows :

$$
\begin{aligned}
& (f+g)(x):=f(x)+g(x) \\
& (\alpha f)(x):=\alpha f(x) \text { for all } f, g \in \operatorname{Map}(X, F), \\
& \text { for all } x \in X, \text { for all } \alpha \in F \text {. }
\end{aligned}
$$

b) Suppose $\mathrm{X}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{F}=\mathbb{R}$ the field of real numbers. Prove that $\left\{\mathrm{f}_{\mathrm{a}}, \mathrm{f}_{\mathrm{b}}, \mathrm{f}_{\mathrm{c}}\right\}$ is a basis of the vector space Map (X, \mathbb{R}) where for $\mathrm{x} \in \mathrm{X}, \mathrm{f}_{\mathrm{x}}$ is defined by

$$
\begin{aligned}
\mathrm{f}_{\mathrm{x}}: \mathrm{X} \rightarrow \mathrm{~F}, \mathrm{f}_{\mathrm{x}}(\mathrm{y}) & =1 \text { if } \mathrm{x}=\mathrm{y} \\
& =0 \text { if } \mathrm{x} \neq \mathrm{y}
\end{aligned}
$$

c) Prove that the norm induced by an inner product satisfies the parallelogram law.
2. a) Give a Boolean expression of the circuit

b) A hall light is controlled by two switches one upstairs and one downstairs. Design a circuits so that the light can be switched on or off from the upstairs or the downstairs.
c) Consider the Boolean Expression

$$
\mathrm{AV}\left(\mathrm{~B}^{\prime} \vee \mathrm{C}\right) \wedge(\mathrm{A} \vee \mathrm{~B} \vee \mathrm{C}) \ldots \circledast
$$

i) Define the truth table of the Boolean function

$$
\mathrm{f}:\{0 ; 1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\}
$$

where f is defined by the Boolean Expression \circledast
ii) Find the disjunctive normal form of the Boolean Expression \circledast
iii) Draw two circuits representing the Boolean Expression \circledast

$$
1+1+(2+3+3)
$$

3. a) Define a Boolean lattice

Let L be a Boolean lattice.
Prove that i) de Morgan's laws hold in L,
ii) $\mathrm{a} \wedge \mathrm{b}^{\prime}=0$ if and if $\mathrm{a} \leq \mathrm{b}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{L}$.
12. a) In a Markov chain having state space $S=\{0,1\}$, let X_{n} denote the state of the machine at time n.

Given that $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}+1}=1 \mid \mathrm{X}_{\mathrm{n}}=0\right)=\mathrm{p}$,
$\mathrm{P}\left(\mathrm{X}_{\mathrm{n}+1}=0 \mid \mathrm{X}_{\mathrm{n}}=1\right)=\mathrm{q}, \mathrm{P}\left(\mathrm{X}_{\mathrm{o}}=0\right)=\pi_{\mathrm{o}}(0)$.
Find $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}}=0\right)$ and $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}}=1\right)$.
b) Write down chapman-Kolmogorov equation, hence derive its Forward and Backward equation. 6+4
5. a) Suppose $G=\{a, b, c\}$.

Prove that any two groups with G as the underlying set are isomorphic
(Hint : Prove that each is isomorphic to \mathbb{Z}_{3})
b) Find the elements a in the group \mathbb{Z}_{12} such \mathbb{Z}_{12} that is generated by a.
c) Suppose X is a nonempty set. Define suitable + (addition) and $\cdot($ miltiplication $)$ on $\mathrm{P}(\mathrm{X})$, the power set of X such that $(\mathrm{P}(\mathrm{X}),+, \cdot)$ becomes a ring (verify ring axioms).

Show that it is a Boolean ring.
$3+3+4$
6. a) Draw the Hasse diaram of the following posets.
i) $\mathrm{P}=\{1,2,3,12,18,0\}$ with divisibility relation,
ii) $\mathrm{P}=$ the set of subgroups of the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ with set inclusion. Discuss also for each of the above posets the boundedness, lattice structure, distributive properties, complements, Boolean structure.
b) Why are the groups $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and \mathbb{Z}_{4} not isomorphic?

PART - II

Use a separate Answer-Scripts)
Answer any five questions.
6. a) The chance that a doctor will diagnose a certain disease correctly is 60%. The chance that a patient will die under his teatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of the doctor who had the disease died. What is the chance that his disease was diagnosed correctly?
b) If A, B are two independent events in a random experiment, show that
i) A^{C} and B ,
ii) A^{C} and B^{C} are independent.
7. a) A card is drawn from a full pack and replaced 260 times. Find the probability of obtaining queen of hearts 4 times.
b) Find mean and variance of the $\operatorname{Binomial}(n, p)$ distribution, where n and p denote the number of trials and probability of success respectively.
8. a) Show athat function $f(x)$ given by

$$
f(x)\left\{\begin{array}{cc}
x & \text { for } 0<x<1 \\
k-x & \text { for } 1<x<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

is a probability density function for a suitable value of the constant K. Calculate the probability that the random variable lies between $\frac{1}{2}$ and $\frac{3}{2}$.
b) If X is normal (μ, σ) vriate, prove that $\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\phi\left(\frac{\mathrm{b}-\mu}{\sigma}\right)-\phi\left(\frac{\mathrm{a}-\mu}{\sigma}\right) \quad$ and $P(|X-\mu|>a \sigma)=2[1-\phi(a)]$ where $\phi(x)$ denotes the standard normal distribution function. $6+4$
9. A point P is taken at random on a line segment $A B$ of length 2a. Find the probability that the area of the rectangle consisting of the sides AP and PB will exceed $\frac{1}{2} a^{2}$. 10
10. Suppose that the travel time from your home to your office is normally distributed with mean 40 minutes and standard deviation 7 minutes. If you want to be 95 percent certain that you will not be late for an office appointment at 1 P.M., what is the latest time that you should leave home? Given that $\phi(1.645)=0.95$; where $\phi(x)$ denotes the area under the standard normal curve to the left of x.
11. Derive the probability for the steady-state distribution that there are n units in the system for the queueing model (Birth and Death Model) : (M/M/1: $\infty /$ FIFO)
b) If L is a finite Boolean lattice then what is the number of element of L ?
c) If an element of a distributive lattice has a complement then it is unique-Explain !
d) What conditions are lacking in the poset

for it to be a Boolean lattice ?
$5+1+2+2$
4. a) Suppose \mathbb{R}^{3} is equipped with the standard inner product. Find an orthonormal basisi of the subspace V of \mathbb{R}^{3} spanned by $\{(1,0,1),(2,1,3\})$ Also find the best approximation of $(1,2,3)$ in V .
b) Define an inner product $<,>$ on \mathbb{R}^{2} such that $\langle(1,0)$, $(0,1)>=2$ and verify that it is an inner product.
c) Prove that the matrices $\mathrm{E}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \quad \mathrm{E}_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $E_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ form a basis of the vector space $M_{2}(\mathbb{R})$ of all 2×2 real matrices. $5+3+2$

