B.ELECTRICAL ENGG. (EVENING) 5TH YEAR 1ST SEMESTER SUPPLE EXAM, 2017 (Supplementary)

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Full Marks 100 (50 marks for each part)

Time: Three hours

Use a separate Answer-Script for each part		
No. of Questions	PART I	Marks
	Answer any three.	
	Two marks reserved for neatness and well organized answers.	
1.(a)	Derive the mathematical model of non interacting two tank system with linear resistance element.	8
(b)	Outflow (q ₀) from a tank is equal to $2h^{3/2}$. Inflow is 'm'. Steady state level in tank is 4m, the area of the tank is $2m^2$. Find [H(s)/M(s)] and characterizing parameters of the transfer function.	8
2(a)	Describe the Process Reaction Curve (PRC) method for tuning of PID controller.	8
(b)	Using direct substitution method, find stability range of k_p for the system having transfer function as $\frac{4}{10s^3+17s^2+9s+1}$.	8
3(a).	Find the closed loop solution of the following difference equation $X(k+2)+5X(k+1)+2X(k)=0$; $X(0)=0$; $X(1)=1$;	10
(b)	Derive the transfer function of ZOH.	6
4.	Write short notes on following (i)Feed Forward Control (ii)Ratio Control (iii)Cascade Control	16
5.(a)	State the advantages of digital controller.	4
(b)	What is the difference between servo and regulatory system.	4
(c)	Derive the mathematical model of CSTH.	8

Ref No: EX/EE/5/T/514/2017(S)

B. E. E. (EVENING) 5TH YR 1ST SEMESTER SUPPLE EXAMINATION, 2017

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Time: Three hours Full Marks: 100 (50 marks for each part)

Use a separate Answer-Script for each part

PART II

Answer any THREE questions. Two marks are reserved for well organized answers.

- a) Explain the advantages of parallel realization of PID control rule using 4+12 electronic circuits than cascade realization.
 b) Prove that in a digital PD controller's output with anti-derivative
 - b) Prove that in a digital PD controller's output with anti-derivative kick, $m_n = k_p e_n \frac{K_p T_d}{\tau} c_n + \frac{K_p T_d}{\tau} c_{n-1} + b_n$, where m_n is the controller output sequence, b_n is the bias, c_n is the process output and e_n is the error sequence.
- 2. With a neat schematic diagram obtain the transfer function of a simple electronic analog PID controller using one OP-AMP.
- 3. a) Discuss about the spring and diaphragm pneumatic actuator in 9+7 reverse and direct acting modes.
 - b) What are the basic designs available in rotary valves? List their advantages over conventional globe valves.
- 4. a) Draw the schematic diagram of a pneumatic PI controller and derive 10+6 its transfer function.
 - b) State advantage of pneumatic controllers over their electronic counterpart.
- 5. Write Short notes on any two:

8+8

- a) Self Regulating Process;
- b) Equal Percentage Control Valves;
- c) Auto/Manual modes with bumpless transfer.