Ref No.Ex/EE/5 /T/413/2017(S) B.E.E (EVENING) 4TH YEAR 1ST SEMESTER SUPPLE EXAM.2017

SUBJECT: POWER ELECTRONICS

Time: Three Hours

Full Marks: 100

Question	PART – I	Marks
No.	50 Marks for each part	
	Answer any THREE questions. Two marks are reserved for neat	
	and well organized answer.	
1.(i)	With the help of two-transistor model, show how regenerative action	
1.(1)	takes place in an SCR.	7
(ii)	What are the advantages and disadvantages of SCR over other power	
	electronic devices ?	3
(iíi)	Explain how SCR is protected from high dV/dt and high di/dt.	6
2(i)	Sketch the structure of a power MOSFET and explain its working	1808
2000000	principle.	6
(ii)	State the important characteristics of a power MOSFET.	4
(iii) 3.(i)	How steady state power loss of a power diode is calculated from its V-	6
	I characteristics and equivalent circuit. Sketch the circuit and explain the operation of a Boost type DC-DC	O
	converter feeding a resistive load using relevant waveforms, and derive	
	the expression of output voltage in terms of its input voltage.	8
(ii)	Why is Pulse Width Modulation (PWM) technique is preferred over	(F)
()	Frequency Modulation (FM) technique to obtain variable duty cycle?	2
(iii)	A step down DC-DC chopper is fed from an input DC voltage of 160	
	volts. What is the required Duty cycle to obtain 12A load current at its	
	output having a purely resistive load of 5 ohms? If the switching	
	frequency of the chopper is 150KHz, what is the OFF-time of the	
	chopper?	6
4.(i)	Sketch the circuit and explain, using suitable waveforms, the operation	
	of a Push-Pull Inverter with fixed input DC voltage. What is the main disadvantage of this type of inverter specially in case of an inductive	
	load?	10
(ii)	What are the advantages and disadvantages of Linear Power	6
	Supply?	
5.	Write the short notes on any TWO of the followings:	8x2
i)	IGBT.	
(ii)	Full Bridge Inverter.	
(iii)	Power losses in a semiconductor devices.	

2

BACHELOR OF ENGINEERING IN

ELECTRICAL ENGINEERING (EVENING) EXAMINATION, 2017

(4th Year, 1st Semester, Supplementary)

POWER ELECTRONICS

Time: Three Hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-script for each Part

PART-II

Answer any three questions

Two marks are reserved for neatness and well organized answer script

- a) Explain the operation of a three phase half wave rectifier circuit with resistive load R and obtain the following:
 Average output voltage, RMS output voltage, form factor, voltage ripple factor, transformer utilization factor and PIV.
 - b) Why are three phase rectifiers preferred over single phase rectifiers?
- a) Explain the operation of a single phase half wave converter feeding a RL load. Give necessary
 circuit diagram and waveforms. Also explain the operation of above converter in the presence
 of a freewheeling diode across the load.
 - b) Draw the output voltage and current waveform of single phase half-wave diode rectifier circuit with inductive load L.
- a) Explain the principle of operation of a single phase, mid-point type cycloconverter. Give circuit diagram and input-output waveforms.
 - b) Briefly explain the operation of three phase full wave converter with resistive load with necessary circuit diagrams and operation.
- a) Explain the operation of single phase full wave bridge converter feeding a RLE load. Give necessary circuit diagram and waveforms. Also find out the average and RMS output voltage across the load.
 - A single phase half-wave converter is operated from a 230 V, 50 Hz source with load resistance is R= 12Ω. For a firing angle of 30°, determine the rectification efficiency, form factor and transformer utilization factor.

- 5. Write short notes on the following
 - a) Three phase half-wave converter
 - b) Single phase semi converter with RLE load

— 0 —

8×2