Ref No: Ex/EE/5/T/221/2017

BACHELOR OF ELECTRICAL ENGINEERING (EVENING) 2ND YEAR

EXAMINATION, 2017 (2nd Semester)

SIGNALS AND SYSTEMS

Full Marks 100

(50 marks for each part) Time: Three hours

	Use a separate Answer-Script for each part	
No. of Questions	PART I	Marks
	Answer any THREE questions Two marks reserved for neatness	
1.(a)	Explain how the expression for the exponential Fourier series for periodic signals is obtained from the expression for the trigonometric Fourier series. From a knowledge of the mathematical expression for the periodic signal, how would you obtain the complex Fourier coefficients?	7
(b)	For the periodic signal $f(t)$ shown in Fig. [A], obtain its complex Fourier coefficients, and sketch its amplitude and phase spectra up to the 5 th harmonic.	9
	f(t)	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Fig. [A]	
2.	Define odd functions and even functions. Explain how a signal $f(t)$ can be decomposed into odd and even components.	2+3 +5+6
	Decompose the signal x(t) shown in Fig. [B] into odd and even	+3+0
	components. Express the signal $x(t)$ shown in Fig. [B] in terms of singularity functions. Also sketch the derivative of $x(t)$.	

No. of Questions	PART I	Marks
	10 10 -2 0 3 4 t Fig. [B]	
3. (a)	Introduce the concept of "Total Energy" and "Average Power" of signals.	4+3 +4
	Define power signals and energy signals.	
	Determine whether the following are power or energy signals or neither of them. (i) $x(t) = 2r(t) - 2r(t-4) - 8u(t-4)$ (ii) $g(t) = e^{-5t}u(t)$	
(b)	Determine the expressions for the amplitude and the phase spectrum functions of the signal	5
	$y(t) = e^{-5 t }$	
4.(a)	Define convolution of two signals.	2+8
	Sketch the following signals. Convolve them graphically, and sketch the result of the convolution.	
	x(t) = 3u(t-5) - 3u(t-6)	
	g(t) = 2u(t) - 2u(t-3)	
(b)	Define a unit impulse function and state its properties.	6

Ref No.: Ex/EE/5/T/221/2017

No. of Questions	PART I	Marks
5.	Write short notes on any two of the following.	8+8
	(a) 'Duty cycle' and 'Crest Factor' of periodic trains of rectangular pulses.	
	(b) Ramp and parabola signals.	1
	(c) Parseval's formula and energy spectral density.	
	(d) Fourier transforms and spectra of unit dc, signum function and unit step.	
		-

Ref. No.: Ex/EE/5/T/221/2017

B. ELECTRICAL ENGG. (EVENING) 2ND YEAR 2ND SEMESTER EXAMINATION, 2017

SIGNALS AND SYSTEMS

Time: Three hours

Full Marks: 100 (50 marks for each part)

Use a separate answer script for each part

PART-II

Answer any three questions.

Two marks reserved for neatness.

- 1. (a) Define each of the following types of systems with suitable example linear, causal, time invariant, stable.
 - (b) State and explain the properties of LTI system.
 - (c) Check for linearity and time invariance of the following systems, i) $\forall (t) = t \, \varkappa^3(t)$ ii) $\forall [n] = \frac{1}{3} \, \varkappa[n] + \varkappa[n+1]$

ii)
$$y[n] = \frac{1}{3}x[n] + x[n+1]$$

(4 X 2) + 2 + (2 X 3)

- 2. (a) Deduce the transfer function of an armature controlled D.C. motor.
 - (b) Find out the Electrical analogous circuits (force-voltage & force-current analogy) for the Mechanical system given below.

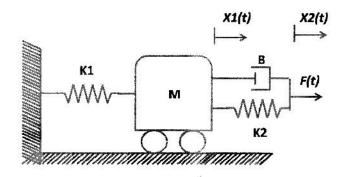
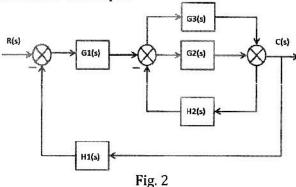


Fig.1


- 3. (a) Derive the expression of "Rise time" and "Peak time" for a 2nd order underdamped system excited by unit step input.
 - (b) A system is described by the equation,

$$\frac{d^3y}{dt^2} + 5\frac{dy}{dt} + 16y = 24x$$

Determine the rise time, peak time and maximum overshoot of the response for unit step input.

8 + 8

4. (a) Find the closed loop transfer function of the system shown in fig. 2 using block diagram reduction technique.

(b) Design an analog computer that simulates the following system,

$$\frac{d^{2}y(t)}{dt^{2}} + 8 \frac{dy(t)}{dt} + 25 y(t) = 500; \quad y(0) = 40, \quad \dot{y}(0) = 150$$

$$|y(t)|_{max} = 50, \quad |\dot{y}(t)|_{max} = 250$$

The input voltage is given as 10v.

6 + 10

- 5. (a) Obtain the state model of the system described below in phase variable form. $\ddot{y} + 2\ddot{y} + 3\dot{y} + 11\dot{y} = \dot{u} + 3u$
 - (c) Derive the expression for transfer function in terms of the state model of a system. Verify this expression for the system mentioned above.