B. E. ELECTRICAL ENGINEERING (PART TIME) 1ST YEAR 2ND SEMESTER EXAMINATION, 2017 Subject: Electronics-II Time: 3.0 Hours Full Marks: 100

No. of questions	Answer any Five (5) question: 5×20	Marks
1.	 (a) Convert the following numbers: (i) (11011.101)₂ = ()₁₀ (ii) (25.5)₁₀ = ()₂ (iii) (247)₁₀ = ()₈ (iv) (257)₈ = ()₁₀ (v) (3A.2F)₁₆ = ()₂ (b) Represent (-17)₁₀ in (i) Sign-magnitude, (ii) 1's complement and (c) 2's complement representation. (c) Find the complement of F = x + y z; then show that FF'= 0 and F + F'= 1. (d) Given the Boolean function: F = x y + x y + y z: Implement with AND, OR, and inverter gates. (e) Given the Boolean function: F = x y / z + x / y + w x / y + w x y (i) Obtain the truth table of the function, (ii) Draw the logic diagram and (iii) Simplify the function to a minimum number of literal using Boolean function algebra. 	(5x1)+(3 x 1) +3+3+ (3 x 2)
2.	 a) Express the following function in sum of min-terms and product of maxterms: F (A, B, C, D) = B'D + A'D + BD (b) Given the Boolean function F (A, B, C, D) = Σ (0, 1, 2, 3, 4, 8, 9, 12) (i) Simplify the function using K- Map in sum of product and product of sum (ii) implement the function using two level forms (x) NAND-AND and (y) AND-NOR 	(3+3)+(4+4)+(3+3)
3.	a) A combinational circuit is defined by the following three Boolean functions: $F_1 = x'y'z' + xz$ $F_2 = xy'z' + x'y$ $F3 = x'y'z' + xy$ Design the circuit with a decoder and external gates (b) Implement the following Boolean function with a multiplexer: $F(A, B, C, D) = \Sigma(0, 1, 3, 4, 8, 9, 15)$ (c) Implement a full adder with two 4 x 1 multiplexers.	6+8+6
4.	 a) What do you meant by an oscillator? (b) Classify the oscillators in accordance with frequency generation. (c) Explain the oscillator principle. (d) Give the circuit diagram of a Wien-bridge oscillator using OPAMP. Explain how oscillation principle is satisfied in this circuit? How the 	2+3+3+(3+4+2)+3