B.E. ELECTRICAL ENGINEERING_THIRD YEAR SECOND SEMESTER (OLD)-2017

DIGITAL SIGNAL PROCESSING

Full Marks 100

Time: Three hours

(50 marks for each part)

Use a separate Answer-Script for each part

No. of PART-1			
Questions	TARIST	Marks	
	Answer any THREE questions		
	Two marks reserved for neatness		
1.(a)	Consider the bandlimited analog signal		
	$x(t) = 3\sin(200\pi t) + 5\sin(600\pi t)$, where t is in seconds.		
	Find the Nyquist sampling rate for the above signal. If the above signal is sampled 125 times per second, derive the values of the frequencies in the reconstructed analog signal.	8	
(b)	Two non-interacting causal systems with impulse response sequences		
	$h_n=\{0,1,5,-2\}$ and $g_n=\{1,-1,0,-1,1\}$ are in cascade. \uparrow Determine the impulse response of the combination.	8	
2. (a)	Explain, with the help of relevant illustrations, how the left-half of the s-plane maps on to the z-plane.	8	
(b)	The response of a digital filter, when excited by a unit step sequence, is	8	
e.	$s[n] = \frac{7}{6}u[n] - \frac{15}{2}(2.0)^n u[n] + \frac{22}{3}(2.5)^n u[n]$ Determine the filter transfer function, and comment on the stability of the filter.	ē.	

[Turn over

Ref No:Ex/EE/T/322/2017(OLD)

No. of	PART I	Marks
Questions		
3 (a)	The transfer function of a DTLTI system is	
ω	H (z) = $\frac{2 z^3 - z^2}{[z^2 - 0.2 z - 0.03](z - 0.5)}$	10
	Derive and draw following structures for realising the system. (i) Direct Form I (ii) Direct Form II.	
(b)	Determine the inverse Z-transform in closed form, of the following.	
	$X(z) = \frac{5z^2 - 3z}{(z-1)(z-3)}$; for $3 > z > 1$.	6
4. (a)	Using impulse-invariant transformation, design a digital filter corresponding to the analog filter with transfer function $G(s) = 10 / (s^2 + 6s + 8)$	8
	Consider a sampling frequency of 20 Hz. Write down the difference equation relating the output and the input sequences.	1/6
(b)	For discretisation of analog filters using backward difference transformation, show with the help of necessary mathematical derivation, how the j ω axis in the s-plane maps on to the z-plane.	8

Ref No:Ex/EE/T/322/2017 (OLD)

	PART-I	ĺ
5.	Write short notes on any two of the following. (a) ROC of Z transforms.	8+8
	(b) Uniform sampling process modeled as impulse modulation.(c) Designing digital filters using bilinear transformation.	
	(d) Recursive and non-recursive DTLTI systems	_
9		

Ref No: Ex/EE/T/322/2017 (Old)

B.E. ELECTRICAL ENGINEERING THIRD YEAR SECOND SEMESTER EXAM 2017 (Old)

SUBJECT: - DIGITAL SIGNAL PROCESSING

Use a separate Answer-Script for each part

Time: Three hours

Full Marks 100 (50 marks for each part)

No. of Questions	PART II	Marks
	Answer any three questions. TWO marks are reserved for neat and well organized answers.	
1. (a)	Derive the expression for frequency response of an M-tap (M is an odd number) causal FIR digital filter with a symmetric and real impulse response.	10
(b)	State and prove Periodicity and Symmetry properties of a linear phase digital filter.	06
2.	Develop a radix-2 decimation in frequency FFT algorithm for DFT. Also draw the signal flow graph for the same.	16
3. (a)	How can FIR digital filters be employed for offline analysis?	08
(b)	Describe in detail the method of histogram equalization employed for image contrast enhancement.	08
4. (a)	How can FFT be employed for digital filtering of a finite real data sequence?	06
(b)	Differentiate between group delay and phase delay of a distortion-less filter.	05
(c)	Prove that, if a filter has a linear phase characteristic with offset, then distortion-less transmission of a signal through that filter is possible.	05
5.	Write short notes on any two of the following:	08×2 =16
(i)	High pass and low pass FIR image filters.	-10
(ii)	Processor architecture of TMS320C25 and its benchmarks.	
(iii)	Inverse discrete Fourier transform.	