# Ref No: EE/T/211/2017(S) B.E.E 2ND YEAR 1<sup>ST</sup> SEM. SUPPLE EXAM.-2017

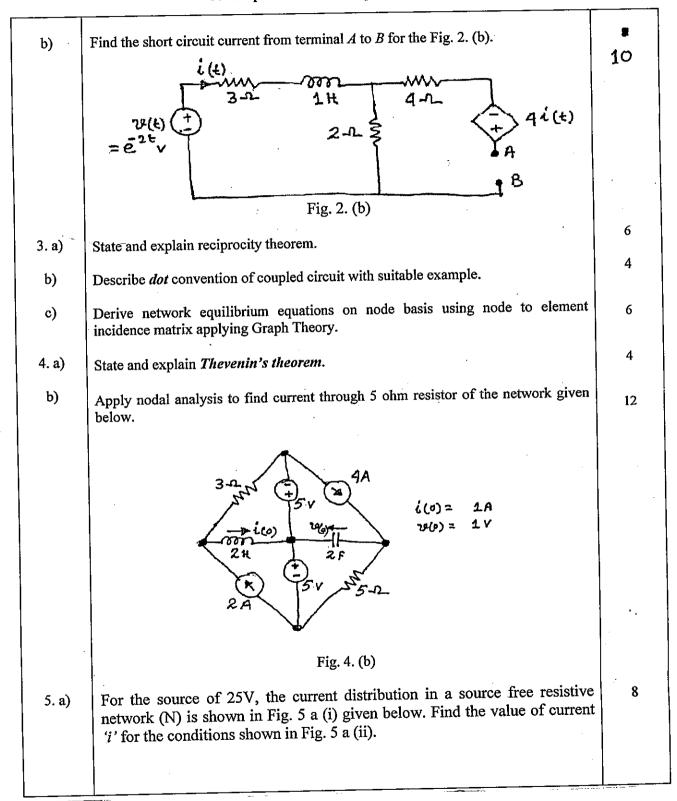
### SUBJECT: - Circuit Theory

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

| No. of    | PART-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Questions | Answer any three, 2 marks for well organized answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 1.        | 500 WW 101 2 WH 2 2 WH |       |
| a)        | Fig. 1(a) Write loop equations in matrix form for the above circuit (Fig. 1(a)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10    |
|           | For what value of $k$ the open circuit voltage of the following circuit (Fig.1(b)) is zero?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6     |
|           | 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 - 15 12 |       |
|           | Fig. 1(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 2. a)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|           | $\mathbf{B} = \begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ -1 & 0 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 \end{bmatrix}$ Choose a tree of the graph including branches 1, 2, and 4 and draw the corresponding cut-set matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |


### B.E.E 2ND YEAR 1<sup>ST</sup> SEM. SUPPLE EXAM.-2017

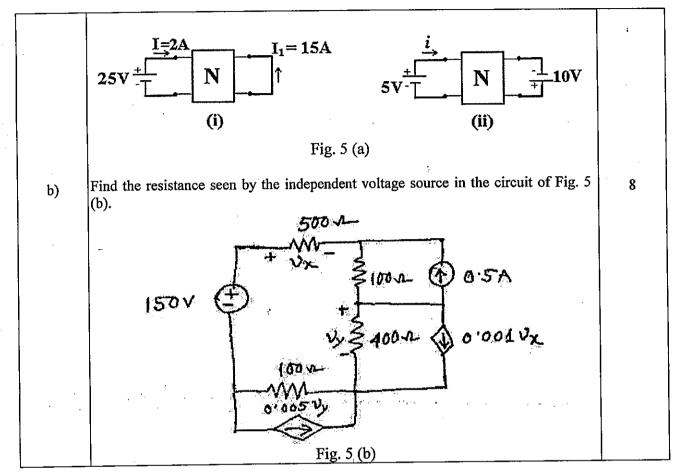
#### SUBJECT: - Circuit Theory

Time: Three hours

Full Marks 100 (50 marks for each part)

#### Use a separate Answer-Script for each part




### B.E.E 2ND YEAR 1<sup>ST</sup> SEM. SUPPLE EXAM.-2017

SUBJECT: - Circuit Theory

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part



# BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING EXAMINATION, 2017 (2<sup>nd</sup> Year 1<sup>st</sup> Semester, Supplementary)

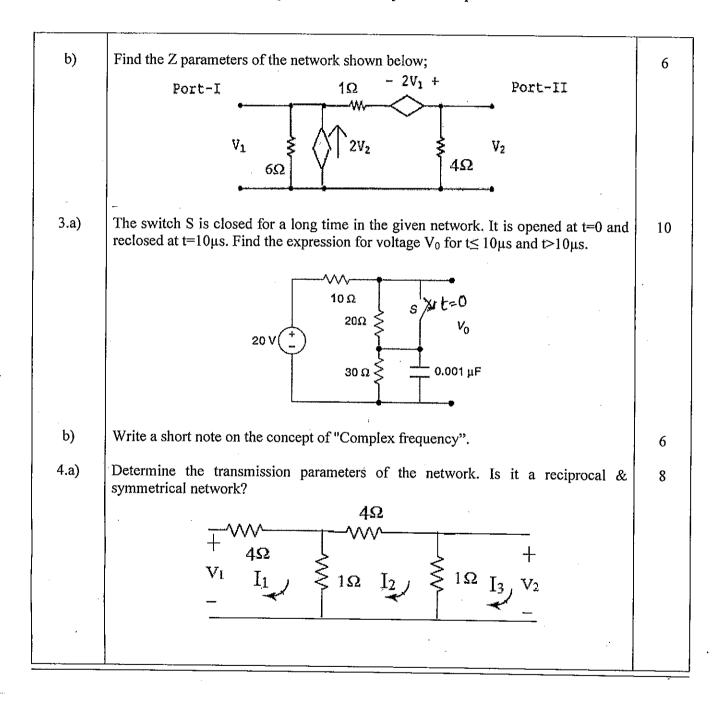
#### SUBJECT: CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for each part)

#### Use Separate Answer-Scripts for each part

| No. of question | <u>Part II</u> <u>Answer any three questions.</u> Two marks reserved for neatness and well organized answer.                                                                                            | Marks |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.a)            | Derive the Laplace transform of the signal f(t) as shown in Fig.:-  1.0  1.0  1.0  1.1  1.1  1.1  1.1  1.                                                                                               | 8     |
| b)              | In the circuit shown in Fig, switch is closed and steady-state condition is reached. At time $t=0$ , the switch is opened. Obtain the expression of current through the inductor. $\frac{6\Omega}{15V}$ | 8     |
| 2.a)            | Determine the voltage drop across a resistance R for a periodic input waveform $V_i(t)$ as shown in Figure. The switch is closed at t=0. Assume $V_c(0+)=v/2$ .                                         | 10    |


## BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING EXAMINATION, 2017 (2<sup>nd</sup> Year 1<sup>st</sup> Semester, Supplementary)

#### SUBJECT: CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for each part)

#### Use Separate Answer-Scripts for each part



# BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING EXAMINATION, 2017 (2<sup>nd</sup> Year 1<sup>st</sup> Semester, Supplementary)

#### SUBJECT: CIRCUIT THEORY

Time: Three hours

Full Marks: 100 (50 marks for each part)

#### Use Separate Answer-Scripts for each part

|       |                                                                                                                                                                                                                                | - 1 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| b)    | Prove the condition for reciprocity and symmetry for a two-port network in terms of its short circuit admittance parameters.                                                                                                   | 8 🕏 |
| 5. a) | The open circuit impedance parameters of a certain two port network are $z_{11} = 15$ ohm, $z_{12} = 5$ ohm, $z_{21} = 6$ ohm, $z_{22} = 10$ ohm. Find the transmission parameters of the network. Derive necessary relations. | 8   |
| b)    | Find the Y parameters of the network as shown in Figure:                                                                                                                                                                       | 8   |
|       | Port-I $10\Omega$ Port-II $10\Omega$                                                                                                                                                                                           |     |
|       | 1 H                                                                                                                                                                                                                            |     |