BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING

EXAMINATION, 2017 (2ND Year, 2nd Semester) SIGNALS AND SYSTEMS

Full Marks 100

Time: Three hours

(50 marks for each part)

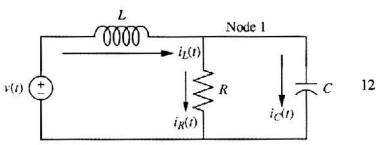
No. of Questions	Use a separate Answer-Script for each part PART I	Marks
1 (a)	Answer any THREE questions Two marks reserved for neat and well organized answers. Determine the expression for the Fourier transform, the energy	
	spectral density and the autocorrelation function of the signal $x(t)$ shown in Fig. [A]. Knowledge of Fourier transforms of standard functions may be used.	10
	$x(t)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Fig. [A]	
(b)	Using appropriate properties of Fourier transform, Obtain the inverse transforms of,	2+4
	$(i)X_1(jf)=e^{-2 f }$	
	$(ii)X_2(jf) = e^{- f } - jf \operatorname{sgn}(f)$	
2.(a)	Evaluate the following integrals.	
	$(i) \int_0^4 e^{(t-1)} \cdot \delta(t-3) dt$	
	(ii) $\int_{-\infty}^{1/2} \sin(2\pi t) \left[\delta \left(t - \frac{1}{4} \right) + \delta \left(t - \frac{3}{4} \right) \right] dt$ (ii) $\int_{-\infty}^{+\infty} e^{(\tau - 1)} \cdot Cos \left[\frac{\pi}{2} (\tau - 5) \right] \cdot \delta (\tau - t + 3) d\tau$	6
	(ii) $\int_{0}^{+\infty} e^{(\tau-1)} \cdot Cos \left[\frac{\pi}{2} (\tau-5) \right] \cdot \delta(\tau-t+3) d\tau$	

No. of Questions	PART I	Marks
(b)	Sketch the derivative of the signal $f(t)$ shown in Fig. [B], and express $f(t)$ in terms of singularity functions.	10
	Parabola (zero slope at t=7) $0 \frac{1}{0} = \frac{1}{2} = 1$	
	Fig. [B]	
	If the response of a linear time-invariant (LTI) system to a unit ramp input is $\Phi(t) = tu(t) - \left(1 - \frac{1}{3}e^{-3t}\right)u(t)$, obtain the	
3 (a)	expression for the response of the system when excited by the signal $f(t)$.	
	Determine the exponential Fourier series for the signal z(t) depicted in Fig. [C]. Sketch the one-sided amplitude, phase and power density spectra up to 5 th harmonic. Also obtain the expression for the Fourier cosine series of z(t).	ž
	z (t) (V)	10
	$\frac{-\cdots}{\begin{vmatrix} -2 & -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 & 2 \end{vmatrix}} \xrightarrow{t \text{ (ms)}}$	
	Fig. [C]	

No. of Questions	PART I	Marks
(b)	Sketch the signal $h(t) = u(\cos(\pi t) + 0.5)$. Determine the duty cycle and crest factor of $h(t)$. Also check the periodicity of the integral of $h(t)$.	
4.	In the circuit shown in Fig. [D], $x(t)$ is the input voltage and the voltage $y(t)$ across the inductor is the output. If $R = 100 \text{ m}\Omega$, $L = 10 \text{ mH}$ and $C = \frac{1}{90} \text{ mF}$, derive the expression for the amplitude response function and the phase response function of the system. Obtain the expression for the output $y(t)$ of the circuit under steady state condition, when the input $x(t)$ is the periodic signal $z(t)$ given in Fig. [C].	16
5.	Fig [D] Write short notes on any two of the following.	
(a)	Energy signals and power signals.	8+8
(b)	Properties of convolution of signals (no proofs required).	
(c)	Determination of Fourier transforms of unit dc, signum function and unit step.	

Ref. No.: EX/EE/T/224/2017

B. ELECTRICAL ENGINEERING 2^{ND} YEAR 2^{ND} SEMESTER EXAMINATION, 2017


Subject: SIGNALS & SYSTEMS Time: Three Hours Full Marks: 100

Part II (50 marks)

Question 1 is compulsory

Answer Any Two questions from the rest (2×20)					
Question					
No.			Marks		
Q1	1 Answer any Two of the following:				
	(a)	Determine if the system $\dot{y}(t) + 4ty(t) = 2x(t)$ is time-invariant, linear, causal, and/or memoryless?	5		
	(b)	Find state equations for the following system $\ddot{y}(t) - 4y(t) = u(t)$.	5		
	(c)	Find the unit impulse response of the system characterized by the following differential equation $\dot{y} + ay = x$. Assume zero initial condition.	5		
	(d)	Find an analog simulation for the equation $y = 3x$, given $ x _{max} = 20$, and $ y _{max} = 20$. Consider full amplifier range of 0 to 10 volts.	5		
Q2	(a)	Given the following system: $G(s) = \frac{10}{s^2 + 10s + 100}$ (i) Plot the pole locations and find the corresponding values of ζ and ω_n . (ii) Plot the unit step response indicating rise time, peak-time, peak overshoot, settling time and steady-state value. Find the value of $x(t)$ as $t \to \infty$ (if it exists) for	4+12		
	(b)	Find the value of $x(t)$ as $t \to \infty$ (if it exists) for $X(s) = \mathfrak{L}[x(t)] = \frac{10(s+1)}{s^2 + 4s + 8}$	4		
Q3	(a)	Given the electrical network of Figure P-			

3(a), find a statespace representation considering the current through the resistor as the output.

Figure P-3(a)

8

(b) Solve the following differential equations using the Laplace Transform method $\ddot{y} + 4\dot{y} + 20y = 2\dot{x} - x$, x(t) = u(t), $x(0) = 0, y(0) = 0, \dot{y}(0) = 1.$

8+4

4+8

8

Q4 (a) Draw an asymptotic Bode magnitude plot with approximate phase plot for the system having a transfer function:

$$G(s) = \frac{(s+3)}{(s+2)(s^2+2s+25)}$$

- (b) (i) Write the differential equation governing the dynamic behaviour of the mechanical system, as shown in Figure P-4(b).
 - (ii) Obtain the analogous electrical network based on force-voltage analogy.

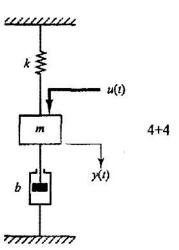


Figure P-4(b)

Q5 (a) (i) Draw analog simulation diagram for the following system, and, (ii) obtain magnitude-scaled analog simulation of the system to utilize the full amplifier range of 0 to 10 volts without any overloading.

$$\ddot{x} + 2\dot{x} + 25x = 0$$
, $x(0) = 20$, $\dot{x}(0) = 0$,

with, $|x|_{max} = 20$, $|\dot{x}|_{max} = 100$.

(b) Obtain the transfer function, $E_o(s)/E_i(s)$, for the Op-amp circuit shown in Fig P-5(b).

Consider the Op-amp to be an ideal one.

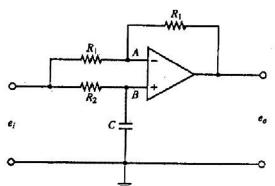


Figure P-5(b)