Ref. No.: EX/EE/PH/T/2B/2017

BACHELOR OF ENGINEERING EXAMINATION, 2017

(Electrical Engg, 1st Year, 2nd Sem)

Time - Three hours

PHYSICS-IIB

Full Marks: 100

Answer any five questions (all carry equal marks)

- 1. a) How the motion of a particle is described in Quantum Mechanics?
 - b) What are phase velocity and group velocity of a wave?
 - c) Show that group velocity is equal to the particle velocity. Show that phase velocity can be greater than the velocity of light.
 - d) A proton is confined to a nucleus of radius 5 x 10^{-15} m. Calculate the minimum uncertainty in its momentum. Also calculate the minimum kinetic energy the proton should have. The proton mass is 1.67×10^{-27} kg.
 - e) Can an electron reside within the nucleus? Explain.

[3+3+6+5+3]

- 2. a) What is wave function? Write down the properties of a wave function.
 - b) Can $\Psi = e^{x^2}$ be a wave function?
 - c) Write down the postulates of quantum mechanics.
 - d) Write down the time dependent Schrodinger equation in three dimensions.
 - e) Using separation of variable method, find the time independent Schrodinger equation.
 Write down the condition of the potential when this separation is not possible.

(2+3)+2+6+2+(4+1)

- a) Solve Schrodinger equation for a particle confined in one dimensional infinite potential well to find its wave function.
 - b) Show that energy eigenvalues are discrete and equally spaced in this case.
 - c) Draw the wave function versus distance and probability density versus distance for different energy eigen states of the above system.
 - e) Find the position expectation value of the particle in the ground state of the above system.
 - f) Assuming the energy eigen value of a particle confined in 3-dimensional infinite potential well, determine the degeneracy of the wave function for first excited state.

[5+3+4+5+3]

4. a) What do you mean by probability current density (j) in quantum mechanics? Derive the expression for j for free particle in one dimension.

[Turn over]

- b) Consider a particle of mass m moving along x-axis being acted upon by a constant potential V_0 at all points x > 0, while the potential is zero for all points x < 0.
 - i. Write down the Schrödinger equations
 - ii. Determine the reflection (R) and transmission (T) coefficients of the particle wave.
 - iii. Show that R + T = 1.

[(2+4)+(2+8+4)]

- 5. a) What do you mean by phase space in Statistical Mechanics. Write down the infinitesimal volume element of a phase space.
 - b) What do you mean by partition function? Calculate the probability of being a microcanonical system at energy state E_r using partition function.
 - c) What do you mean by ensemble? Distinguish among micro-canonical, canonical and grand-canonical systems.

[6+7+7]

- 6. a) State Faraday's law of electromagnetic induction and express it in differential form.
 - b) Find the expressions for the growth and the decay of charge on a capacitor connected in series with a resistor. What do you mean by the time constant of the circuit? When can the transient be said to practically die out?
 - c) A DC voltage of 80 volt is switched on to a circuit containing a resistor of 5 ohm in series with an inductance of 20 Henry. Calculate the rate of growth of current at the instant when the current is 6 amp.

[5+12+3]

- a) A sinusoidal emf is applied to a circuit with inductance, capacitance and resistance in series. Derive an expression for the instantaneous current and power factor.
 - b) Find an expression for the voltage drop V_R across R. How do the magnitude and the phase of V_R vary with ω ? At what value of ω the maximum power is consumed by the circuit?
 - c) A resistance of 5 ohm and an inductance of 0.8 Henry are put in series with a variable capacitance and the combination is placed across 100 volt, 50 Hz main. Find the capacitance for which the current is a maximum.

[10+7+3]

- 8. a) Write down and explain four Maxwell's equations in electromagnetism.
 - b) Derive the wave equations from Maxwell's equations in free space.
 - c) State and prove Poynting theorem?