B. CONS. ENGG. 4th YEAR 1ST. SEM. EXAM. - 2017

BRIDGE ENGINEERING

(Name in full)

Time: Three hours

PART - 1

Full Marks: 100

Use a separate Answer - Script for each part

No. of							·· ·		Mark				
ques													
tions				•									
			***	Answer ar	ny two			· · · · · · · · · · · · · · · · · · ·					
1.		Evaloia das 4	4D	117' 1.1 m									
1.	a. b.	Explain the tern flood velocity. Calculate dischar following data. A	ge and "Re	gime Width	"at a parti	cular location		_	3+3				
				•					19				
					7								
		BEDLEVEL (M)	25.73	25.34	24.51	23.87	22.46	·					
		CHAINAGE (M)	(-)300.00	(-)150.00	0.000	(+)150.00	(+)300.00						
	LONGITUDINAL PROFILE OF BED THROUGH DEEPEST CHANNEL												
	HFL 27.850												
			;										
			; 										
		DISTANCE (M)	27.850 27.00			26.05	27.850						
			0.00 20		75 100	150	200	ļ					
					TION AT BRID GURE-1	DOELOCATIO	N						
				<u> </u>	SCINE-1								
2.	a.	What do	mean by	'scour''? E	Symlain th	a tama sit		Ci 1					
-	a. What do mean by "scour"? Explain the term silt factor. Given design discharge, linear waterway width, span arrangements and overall								7				
ļ	dimensions of piers and foundations how will you calculate scour depth?												
!	How "normal scour depth" and "design scour depth" are related?												
	b. A single span simply supported superstructure of a bridge of span length							5					
	"L" is supported on Roller bearing at one end and on Roller cum Rocker bearing at the other end. Let the applied horizontal force on superstructure												
	be "H", dead load and live load reactions at Roller end be "R _g " and "R _g "												
		,	respectively. How much horizontal for will be transferred to Roller end and										
		respectivel	y. How mi		Roller cum Rocker end? Give reasons.								
		respectivel Roller cum	Rocker en	id? Give re	asons.			İ					
	c.	respectively Roller cum If in place	Rocker er of Roller	id? Give re and Rocke	asons. er cum Ro	oller bearin	ng Elastor	meric bearing	3				
	c.	respectively Roller cum If in place was used fo	Rocker en of Roller or the bridg	id? Give re and Rocke ge mention	asons. er cum Ro ed in "c" a	above, how	much ho	meric bearing rizontal force	3				
	c. d.	respectively Roller cum If in place was used for would have	Rocker en of Roller or the bridg transferre	nd? Give re and Rocke ge mention d to substr	asons. er cum Ro ed in "c" a ucture thro	above, how ough bearir	much hog?	rizontal force					
		respectively Roller cum If in place was used fo	Rocker en of Roller or the bridge transferre eak run of area = 200	and Rocke and Rocke ge mention d to substra f for design to Hectres,	asons. er cum Ro ed in "c" a ucture thro ning a brid f = 0.97	above, how ough bearir	much hog?	rizontal force	3				

B. CONS. ENGG. 4th YEAR 1ST. SEM. EXAM. - 2016

BRIDGE ENGINEERING

(Name in full)

PART - 1

Use a separate Answer – Script for each part						
	Level difference, H = 38 metres. Characteristics of catchment soil – loamy soil, largely cultivated, P = 0.30 Rainfall: Severest storm that have occurred in 20 years have dropped 25 cm of rain in 4.5 hours.					
3.	Design an Elastomeric bearing with the data given below. Draw a neat labeled sketch of the bearing. Span of the bridge = 25.0 M No. of Girders per span= 4 Grade of Concrete = M 35 Dead Load reaction (all inclusive) per girder = 70.0 T Maximum Dead Load BM per girder = 410 T-M Maximum Live Load Reaction / girder = 42.0 T (including impact) Minimum Live Load Reaction / girder = 8.0 T (including impact) Maximum Live Load Moment /girder = 225.0 T-M (including impact) Long horizontal force / girder acting on superstructure = 11.0 T Moment of Inertia of one girder = 0.8799M ⁴	25				

25

B. CONS. ENGG. 4TH YEAR 1ST SEM EXAM.-2017

BRIDGE ENGINEERING Part - 11 Full Marks: 50

Answer any two Questions. Relevant IRC & IS Codes are allowed. Assume any other relevant data not provided. Draw neat sketches to explain your answer.

- 1. a) Discuss Class A train of vehicles and its Impact factor as per IRC code 5
 - b) Calculate the Live load moment for the External Longitudinal Girder of a RCC girder bridge by Courbon's method with following details. 20

The effective span of the bridge is 24 m.

Width of Carriageway = 7.5 m; Size of Kerb = 1000 X 300

Thickness of Deck Slab = 200 mm; Thickness of Wearing Coat = 50 mm

No. of Longitudinal girder = 4; No. of Cross girder = 7

Size of bottom flange of Longitudinal Girder = 750 X 300 mm

Web thickness of Longitudinal Girder = 250 mm

Centre to centre of Longitudinal Girder = 2000 mm

Overall depth of Longitudinal Girder = 1800 mm

Size of fillets = 150 mm X 150 mm

Thickness of Cross girder = 200 mm

Overall depth of Cross Girder = 1400 mm

- 2. a) What is role of Cross girder and Abutment in girder type bridges? 5
 - b) Discuss different types of Cable Stayed bridges?

5

c) Calculate the Live load moment of the cantilever slab of the RCC girder bridge of problem 1(b). The thickness of cantilever slab = 300 mm to 150 mm.

15

3. a) What are the ideal characteristics for selection of a site?

5

- b) Calculate the Live Load moment of a two-lane Culvert due to 70R Tracked vehicle with following data.
 - i. Clear span = 6.0 m
 - ii. Bearing width = 300 mm
 - iii. Thickness of Deck Slab = 280 mm
 - iv. Size of kerb = 600 mm X 300 mm
 - v. Thickness of Wearing Coat = 60 mm
 - vi. Size of Hand Rail = 80 mm X 1000 mm = 1 KN/m
 - vii. Value of ' α ' = 2.90