BCSE IIIrd Year - 2017 1st Semester Supplementary FORMAL LANGUAGE & AUTOMATA THEORY

Time: Three hours Full Marks: 100

11	me:	Answer any five questions Full Marks: 100	
1.	Cor fica	nstruct Deterministic Finite Automatas to accept the following languages with necessary justitions:	
	(a)	All binary strings that represent an unsigned number divisible by 5.	
	(b)	All binary strings whose 3rd symbol from the right hand end is 1.	
			10+10
2.	(a)	Let L_1, L_2 be languages that are acceptable by DFAs. Prove that the language $L_1 \cup L_2$ is also acceptable by a DFA.	
	(b)	Prove that every finite language is acceptable by a DFA.	
			10+10
3.	(a)	State and prove the Pumping Lemma for regular languages.	
		Why it is useful?	
	(b)	Find out if the language $\{a^ib^j: i \neq j\}$ is acceptable by a DFA.	
			12+8
4.	(a)	Let L be a language accepted by a DFA. Prove that its reverse L^R is accepted by a NDFA. Explain how non-determinism is introduced in this construction.	22.0
	(b)	Let $L = \{All \text{ strings of } a, b \text{ where at least one pair of } a$'s is separated by a substring of even length $\}$. Show that L can be accepted by a NDFA. Hence explain why non-determinism is useful.	
			10+10
5.	(a)	Explain the concept of ϵ -closure of a set of states of a NDFA.	
		Prove that for each non-deterministic finite automata, there exists an equivalent deterministic automata.	
			3+17
c	(-)		3+17
ь.		Develop regular expressions for all strings of $\{a,b\}$ that contain an <i>even</i> number of a's and <i>even</i> number of b's.	
	(b)	Prove that the language accepted by a DFA can always be described by a regular expression.	
			8+12
7.	(a)	Explain when is a Push Down Automata called deterministic.	
		Construct a DPDA to accept the language $\{a^mb^n: 0 \le m < n\}$ with necessary justifications. What is the mode of acceptance of this DPDA?	
	(b)	Construct a PDA to accept the language $\left\{ww^R:w\in\{a,b\}^+\right\}$ with necessary justifications.	
		Explain all sources of non-determinism present in the transitions of this PDA. What is the mode of acceptance of this PDA?	
			10+10