B. C. S. E. 3rd year 1st Semester Supplementary Examination 2017

OPERATING SYSTEM

Time: 3 hours

Full Marks: 100

Answer Question no.1 and any four from the rest

(All parts of the same question must be answered together)

1.

- a. What is response time?
- b. What are the necessary conditions of deadlock?
- c. What are the advantages and disadvantages of First Come First Served (FCFS) scheduling strategy?
- d. What operations are performed on semaphore?
- e. Explain the concept of best fit and worst fit strategies.

3+6+4+3+4

2.

- a. What are the contents of Process Control Block (PCB)?
- b. Consider a system with four processes as shown below with corresponding arrival time and execution time:

Process	Arrival time	Execution time
P_0	0	6
P_1	2	8
P_2	4	5
P_3	6	9

Calculate waiting time and turnaround time of each process using First-Come First-Served (FCFS) scheduling policy. Show the scheduling decisions using Gantt chart.

- c. How will Round Robin scheduling behave if the CPU time slice is considerably large?
- d. What are the disadvantages of Shortest Remaining Time Next (SRTN) scheduling?

4+10+3+3

3.

a. Consider the following page reference during a given time interval for a memory consisting of 3 frames: 1, 8, 2, 0, 14, 2, 8, 8, 2, 14, 0, 14. Using both First-In First-Out (FIFO) and Least Recently Used (LRU) page replacement strategies show the contents of memory each time a page is referenced. Compare the number of page hits for both cases. Do you get a result that you expect? Why or why not?

Q3 contd.

b. What are the advantages and disadvantages of demand paging? How is Translation Look aside Buffer (TLB) used?

12 + 8

4.

- a. Compare Indexed File Allocation strategy with Linked File Allocation strategy.
- b. Consider a file system using inodes for file representation. Disk blocks are 16KB and a pointer to a block requires 8 bytes. The inode contains 16 direct blocks, and a single indirect disk block. What is the maximum size of a file supported by this file system?
- c. What is bit-vector presentation of free disk space management? What are its problems?
- d. How is space allocated using Contiguous File Allocation strategy? What problems may arise?

6+4+5+5

5.

- a. What is seek time?
- b. Disk requests come into the disk driver for cylinders 90, 135, 63, 119, 49, 75, 144, 168, 52, 89 in that order. A seek takes 2 msec per cylinder move. What is the total seek time to access the above requests for First-Come First-Served (FCFS) disk scheduling strategy? Disk arm is initially at cylinder 55.
- c. Compare Circular SCAN disk scheduling strategy with SCAN disk scheduling strategy.
- d. Compare the best fit, worst fit and first fit strategies for dynamic memory allocation. What is memory compaction?

 3+6+4+7

6.

a. Consider the following snapshot of 4 resources (R1, R2, R3, R4) in a system with 4 processes; P₀, P₁, P₂, P₃.

	Allocated				Maximum Requirement			Available				
	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P ₀	2	1	0	2	3	2	0	4	6	8	5	7
P ₁	0	2	1	3	2	3	3	5				
P ₂	1	1	2	1	4	3	5	2	1			
P_3	2	2	2	2	2	5	4	3				

- (i) What are the further requirements of each of the processes?
- (ii) Find out whether the system is in *safe* state or not. Show the working of the algorithm/s. What is the safe sequence of processes, if any, in this case?

Ex/CSE/T/313A/2017(S)

06	contd.
\cup 0	coma.

- (iii) Suppose there is request from P₁ for 2 more instances of R3. Show whether this request could be granted.
- b. Explain the conditions to be satisfied for solutions to mutual exclusion problem. How can *Hold* and *Wait* condition be prevented?

12+8

- 7.
- a. What information does a thread have? What are the different threading models?
- b. Explain the process state transition diagram.
- c. Compare and contrast segmentation and paging.

6+7+7