B. CSE 2nd Year 1st Semester Supplementary Examination 2017

NUMERICAL METHODS

Time: 3 hours. Full Marks: 100

> Answer question no.1 and any 4 from the rest. All parts of same question should be answered together.

1

		•		
1.	 a) What will be the maximum absolute error when an approximate number p is divided by another approximate number q. b) Derive Aitken's acceleration formula. c) Is it possible to get a solution of the following system of equations by Gaussian elimination method? 			
		x - 2y + 3z = 15 3x + 2y + 9z = 18 x + y + 3z = 10	3	
	d)	Can Gauss- Seidel method be used for solving the following system of equations? Why?	2	
		9x + 2y + 3z = 2 3x + y + z = 5 x - 6y + 2z = 10		
	e)	Derive the recursive formula to find 1/N using Newton-Raphson method.	3	
	f)	Define Δ , ∇ and E. Prove that $E\nabla = \Delta$.	3	
	g)	Given the function $y = 1 / x$, show that		
		$y[x_0, x_1,,x_n] = (-1)^n / (x_0 x_1,,x_n)$	3	
2.	a) b)		6 8	

[Turn over]

2 4

c) What is its advantage over Newton- Raphson method?
d) Derive the recursive formula for evaluating N^{1/3} by Chebyshev method.

- 3. a) Discuss Gauss- Jordan elimination method for matrix inversion.
 - b) Calculate the number of multiplications / divisions required in the matrix inversion process.
 - c) Find the inverse of the following matrix.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

- 4. a) Define the terms eigenvalue and eigenvector.
 - b) Find all the eigenpairs (λ_i , X_i) of the following matrix.

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

c) Fit the function $y = A e^{Bx}$ to the following table of values by method of Least Squares.

					· · · · · · · · · · · · · · · · · · ·
X	0	1	2	3	4
v	1.5	2.5	3.5	5.0	7.5

- 5. a) Discuss Euler's method for solution of ordinary differential equations.
 - b) Derive the condition for convergence of this method and also the expression for truncation error associated with this method.
 - c) Solve the following initial value problem using Euler's method.

$$\frac{dy}{dx} = (x-y)/2 \text{ with } y(0) = 1$$

Solution is required over [0,1] with $h = \frac{1}{8}$. Calculate the percentage error with the exact solution

$$Y = 3 e^{-x/2} + x - 2$$

- 6. a) Discuss Jacobi's iterative method for solution of linear simultaneous equations
 - b) Write down the algorithm in matrix notation.
 - c) Find out the condition of convergence of the method.
 - d) Solve the following system of equations by jacobi's iterative method. Solution is required corrected upto 4 decimal places.

$$10x + 2y + z = 9$$

$$x + 10y - z = -22$$

$$-2x + 3y + 10z = 22$$

6

6.

8

2

8

10

6

4

10

6

4

4

6

- 7. a) Derive numerical integration formula using Simpson's $\frac{1}{3}$ rule.
 - b) Derive the expression for total truncation error associated with this method.
- 8. a) Discuss Lin's method for finding the complex roots of a polynomial equation.
 - b) Evaluate the following integral corrected upto 3 decimal places using Trapezoidal method.

$$\int_{0}^{2} \{ 1/(x^{2}+4) \} dx$$
 10