Bachelor of Computer Science & Engineering Examination 2017 Special (OLD)

(First Year, First Semester)

MATHEMATICS - ID

Time: Three Hours Full Marks: 100

The figures in the margin indicate full marks

Answer Q. No. 9 and any six questions from Q. Nos. 1 - 8.

- 1. Let A, B, C be three subsets of a set X.
 - (a) Show that $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.

8

(b) If $A\Delta C = B\Delta C$, then prove that A = B.

8

8

- (a) Define reflexive and symmetric relations on a nonempty set. Let S be a set with 40 elements. Find the number of reflexive and symmetric relations that can be defined on S.
 - (b) What is an equivalence relation on a nonempty set? Find all equivalence relations on $\{a, b, c\}$.
- 3. (a) Define a surjective function. Let $f:A\longrightarrow B$ and $g,h:B\longrightarrow C$ be functions, where A,B,C be three nonempty sets. If $g\circ f=h\circ f$ and f is surjective, then prove that g=h.
 - (b) Let X and Y be two nonempty sets and $f: X \longrightarrow Y$ be a function. Prove that f in one-to-one if and only if for all subsets A, B of X, $f(A \cap B) = f(A) \cap f(B)$.
- 4. (a) If n is a positive integer greater than 1, then show that $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is not an integer.
 - (b) Prove that $5^n + 3$ is divisible by 4 for all natural numbers n.
- 5. (a) Define a permutation and an odd permutation. Find the number of odd permutations in S_6 .
 - (b) Let $\alpha = (2\ 4\ 7\ 9\ 5)(8\ 1\ 3)$, $\beta = (5\ 6\ 7\ 1)(2\ 8\ 6)$ and $\gamma = (4\ 8\ 9\ 7\ 6\ 5)(3\ 2\ 1)$ in S_9 . Express $\alpha^2\beta^{-3}\gamma^{-2}$ as a product of disjoint cycles.

- 6. (a) Define a *countable* set. Prove that the set $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is countable, where \mathbb{Q} is the set of all rational numbers.
 - (b) Prove that set of all irrational numbers is uncountable.

8

- 7. (a) What is a cardinal number |A| of a set A? Prove that the set of all real functions defined on the closed unit interval has the cardinal number 2^c , where c is the cardinal number of the set \mathbb{R} of all real numbers.
 - (b) Prove that $|A| < |\mathcal{P}(A)|$ for any set A, where $\mathcal{P}(A)$ is the power set of A.
- 8. (a) Define a well-ordered set. Show that the set of all natural numbers is well-ordered. 8
 - (b) Let $A = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x < 1 \text{ and } 0 \le y < 1\}$ and $B = \{x \in \mathbb{R} \mid 0 \le x < 1\}$. Show that |A| = |B|.
- 9. Prove that every infinite set A has a proper subset B such that |A| = |B|.