B.E. Computer Science and Engineering 1st Year - 2nd Semester , 2017 Engineering Mechanics

Full marks 100

Time – 03 Hrs

Answer any FIVE questions taking at least TWO from each group

Group A

	Group A			
Q1(a) Find the	e reaction force and moment at $f A$ for the beam supported and loaded as sho	own in		
Fig 1(a).		<1	0>	
(b) A force F:	= ($15i$ - $30j$ + $20k)$ N is acting at point having coordinate (1 , - 2 , 5) m . Find th	e mome	ent of	
the force about an axis 1-2 joining point 1 (3, 2, -5) m and point 2 (5, 2, -1) m.			<10>	
Q2(a) Justify Couple is a free vector				
(b) Two forces and a couple are shown in Fig 2(b). The couple is position in plane Z-Y plane. Find			;> •	
resultant of the system at point O				
		<12:	>	
Q3(a) Referring to Fig3(a), find the tension S induced in tie rod AB of the frame ABC supported and loaded as shown				
(b) A hand brake is shown in Fig 3(b) If $v' = 0.4$			•	
(b) A hand brake is shown in Fig 3(b). If $\mu_d = 0.4$, what is the resisting torque when the shaft is rotating.				
O4(a) Find the coordinates of the section is		<10>	•	
Q4(a) Find the coordinates of the centroid of the lamina shown in Fig 4(a) as in coordinate axes given.			٦.	
(b) Find I _{xx} of the T section as shown in Fig 4(b)		<10>		
		<10>		
GROUP-B				
Q5(a) A particle moves along the positive branch of the curve $y=1+(x^2/10)$ with its x coordinate is				
controlled as a	function of time according to $x=2t^3/3$ where x and y are in meters and t	in seco	nds.	
compute the ma	agnitude of the acceleration of the particle and its position when t=2 sec	~10s		
(b) A pin is confines to move in a parabolic slot in a fixed plate. The pin is also guided by the vertical class				
which is given a constant horizontal velocity to the right of 0.1 m/sec. Determine the velocity and				
acceleration of the pin for the position $x=0.1$ m. (Fig 5(b))			anu	
Q6(a) A jet plane flying at a constant velocity \mathbf{v} at an altitude \mathbf{h} =8 km is being tracked by rad				
5 shown in fig 6(a). If the angle θ is decreasing at a rate of 0.025 rad/sec when $Q = 60^{\circ}$				
value of Factoris distant and the velocity of the plane				
		<10>	P. T.0	

Q6(b). A particle moves with a speed of 3 m/sec and the rate of change of speed is $3m/sec^2$ along the curvilinear path $y = 3x^2$ in a x-y coordinate system. What is the acceleration of the particle at x=1.5 m in (n-t) and (x-y) co ordinate systems.

- Q7(a) A small rocket propelled vehicle with total mass of 100 kg starts from rest A and moves with negligible friction along the track in the vertical plane shown in fig 7(a). If the rocket exerts a constant thrust T=2kN from A to B where it is shut off, determine the distant S which the vehicle rolls up the incline before stopping.
- (b) A high speed land racer is moving at a speed of 100m/sec. The resistance to the motion is primarily due to aerodynamic drag which is approximated as **0.2V**² with V in m/sec. If the vehicle has a mass of 4000kg, what distance will it coast when the engine stops before its speed reduced to 70 m/sec. <10> Q8(a) Starting from Newton's 2nd law , derive work- energy principle <10>
- (b) A bead of mass 0.25 kg is released from rest at A and slides down and around the fixed smooth wire. Determine the force $\bf N$ between the wire and the bead as it passes the position $\bf B$ (Fig 8(b)) <10>

Ex | CSE | EM | ME | T | 122A | 2017.