B.C.S.E. 1st Year, 1st Semester Supplementary Examination, 2017 Digital Logic

Full Marks: 100

Time: 3 Hr

Answer Five Questions: Answer any five.

Write answers to the point and state all the assumptions (wherever required). ALL PARTS OF THE QUESTION SHOULD BE ANSWERED TOGETHER

- Q 1) (a) An engine has 4 fail-safe sensors. The engine should keep running unless any of the following conditions arise: (2+4+4)
 - * If sensor 2 is activated.
 - * If sensor 1 and sensor 3 are activated at the same time.
 - * If sensor 2 and sensor 3 are activated at the same time.
 - * If sensors 1, 3, 4 are activated at the same time.
 - (i) Derive the truth table for this system.
 - (ii) Design, using Karnaugh Map techniques, a minimum AND-OR gate network for this system. Draw the resulting digital circuit diagram.
 - (iii) Design, a digital circuit that will implement the above minimal AND-OR gate network using NOR gates only. Assume that each logic gate can have any number of inputs and that inverted inputs are available.
 - (b) Explain the operation of a JK flip-flop. How does it differ from an RS flip-flop? What are the limitations of a JK flip-flop? (4+3+3)
- Q 2) (a) Make a K-Map for the following function: $f = AB + A\overline{C} + C + AD + A\overline{B}C + ABC \tag{10}$
 - (b) A multiplier circuit takes two 2-bit binary numbers y_1y_0 and x_1x_0 and produces an output number $z_3z_2z_1z_0$ that is equal to the arithmetic product of the two input numbers. Design the logic circuit for multiplier. (10)
- Q 3) (a) Convert an S-R flip-flop to J-K flip-flop.

(5)

(b) Design a 3 bit binary DOWN counter.

(10)

(c) Write short notes on any two:

 (2.5×2)

- (i) Encoders and Decoders
- (ii) Shift Registers
- (iii) Multiplexer and Demultiplexer
- (iv) Flip-flops

Q 4)	(a)	Solve the following using Quine-McCluskey Method	(10)	
	$F(A, B, C, D) = \Sigma(23, 7, 9, 11, 13) + \Sigma\phi(1, 10, 15)$			
	(b)	Prove the rule of Boolean algebra: $(A + B)(A + C) = A$	+BC (4)	
	(c)	Represent (27) ₁₀ in binary form using : (i) BCD Code (ii) Excess-3 Code	$(2 \times 3 = 6)$ (iii) Gray Code	
Q 5)	(a)	Do the following $(3+3+2+2=10)$		
	 (i) Convert the following (111011101)₂ to octal, decimal and hexadec (ii) Convert the following decimal number, (3479)₁₀ to binary, octal a hexadecimal formats 		binary, octal and	
		(iii) Perform the following addition: $(BCD)_{16} + (A34)_{16}$ (iv) Perform the following subtraction using two's complement $(1101011)_2 - (111010)_2$		
the truth table		State the logic circuit, truth table and derive the equival the truth table of the following Boolean expression $Y = (3 + 4 + 3 = 10)$	ent logic expression from $A\overline{B} + \overline{B}C$	
Q 6)	(a)	Design the full subtractor using NAND gates only.	(5)	
	(b)	Explain the working of bi-directional shift registers.	(5)	
	(c)	Realise the function with the help of NAND gates:	(5)	
	$f(A,B,C,D) = \Sigma(0,1,4,6,9,12,15) + \phi(2,3,6)$			
	(d)	 (i) Convert the following 29₁₆ to binary. Show each stee (ii) Perform the following: 411 - 332 using 9's complem (BCD) subtraction. (3) 		

Q 7) (a) Design a MOD-6 synchronous counter using J-K Flip-Flops.

(10)

(b) Design a digital circuit for generating a sequence $1-1-2-3-5-7-1-1-2\dots$