8

8

Bachelor of Computer Science & Engineering Supplementary Examination 2017

(First Year, First Semester)

MATHEMATICS - I

Time: Three Hours Full Marks: 100

The figures in the margin indicate full marks Answer Q. No. 9 and any six questions from Q. Nos. 1-8.

- (a) Let A, B, C be three subsets of a set X. If AΔC = BΔC, then prove that A = B.
 (b) Define reflexive and anti-symmetric relations on a nonempty set. Let S be a set with 40 elements. Find the number of reflexive and anti-symmetric relations that can be defined on S.
 (a) Define a permutation and an even permutation. Find the number of even permutations in S₁₅.
 (b) Let α = (2 5 7 9 4)(3 1 8), β = (5 1 7 6)(2 8 6) and γ = (4 6 9 5 8 7)(3 2 1) in S₉.
- Express $\alpha^2 \beta^{-3} \gamma^{-2}$ as a product of disjoint cycles.
- 3. (a) Define an uncountable set. Prove that the set of irrational numbers is uncountable. 8

4. (a) Find the truth table of $[(p \to q) \lor (q \to r)] \land (p \to r)$.

- (b) Prove that $|A| < |\mathcal{P}(A)|$ for any set A, where $\mathcal{P}(A)$ is the power set of A.
- (b) Let $A = \{1, 2, ..., 10\}$. Consider each of the following sentences. If it is a statement, then determine its truth value. If it a proposional function, determine its truth set.
 - (i) $(\forall x \in A)(\exists y \in A)(x + y < 4)$. (ii) $(\forall x \in A)(\forall y \in A)(x + y < 4)$.
- 5. (a) If α , β , γ are the direction cosines of a line, then show that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$.
 - (b) If $\vec{\alpha} = 2\vec{i} 12\vec{j} + 3\vec{k}$, $\vec{\beta} = 4\vec{i} + \vec{j} + 7\vec{k}$ and $\vec{\gamma} = 3\vec{i} + 4\vec{j} + 3\vec{k}$. Find the vector $\vec{\alpha} \cdot (\vec{\beta} \times \vec{\gamma})$.
- 6. (a) Find the equation of the plane which passes through the point (2, -1, 1) and is orthogonal to each of the planes x y + z = 1 and 3x + 4y 2z = 0.

- (b) Show that the angle between the diagonals of a cube is $\cos^{-1}\left(\frac{-1}{3}\right)$.
- 7. (a) Show that the spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 18x 24y 40z + 225 = 0$ touch each other. Find there point of contact.
 - (b) Find the equation of the right circular cone whose vertex is at the origin, axis is $\frac{x}{3} = \frac{y}{2} = \frac{z}{4}$ and semivertical angle is 45°.
- 8. (a) If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are three unit vectors satisfying $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = \vec{0}$, where $\vec{0}$ is the zero-vector, then find $\vec{\alpha} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\gamma} + \vec{\gamma} \cdot \vec{\alpha}$.
 - (b) A point moves in such a way that the sum of the squares of its distances from the six faces of a cube is constant. Show that its locus is a sphere.
- 9. Let $S = \{n \in \mathbb{N} \mid n \text{ divides 144}\}$. Define a lattice. Show that (S, \vee, \wedge) is a lattice, where $a \wedge b = \gcd\{a, b\}$ and $a \vee b = \operatorname{lcm}\{a, b\}$.