BACHELOR OF COMPUTER SC. ENGINEERING EXAMINATION, 2017
(1st Year, 2nd Semester, Old Syllabus)
Mathematics - IV D
Time : Three hours
Full Marks : 100

Answer any five questions.

1. (a) Prove that

$$
\left|\begin{array}{ccc}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
$$

(b) Explain with reasons if $(A+B)(A-B)=A^{2}-B^{2}$ hold true for square matrices.
(c) Find the inverse of the matrix $\left(\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right)$ and show that $A^{3}=A^{-1}$.
(d) If possible solve the system of equations

$$
\begin{aligned}
& x-2 y+z-\omega=-1 \\
& 3 x-2 z+3 \omega=-4 \\
& 5 x-4 y+\omega=-3
\end{aligned}
$$

2. (a) Find the rank of the matrix $\left(\begin{array}{cccc}2 & 0 & 2 & 2 \\ 3 & 4 & -1 & -9 \\ 1 & 2 & 3 & 7 \\ -3 & 1 & -2 & 0\end{array}\right)$ and reduce to its normal form.
(b) Solve
$x+y+z+\omega=0$
$x+3 y+2 z+4 \omega=0$
$2 x+z-\omega=0$
(c) Define a subspace of a vector space. Examine whether W is a subspace of V where
(i) $V=R^{3}, W=\{(x, y, z): x-3 y+2 z=0\}$
(ii) $V=$ the space of all square matrices of order 3
$W=$ the set of all non-singular matrices of order 3 .
$2+3+2$
3. (a) Find the eigen values and eigen vectors of the matrix $\left(\begin{array}{lll}2 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 2\end{array}\right)$. 9
(b) Prove that the eigen vectors corresponding to distinct eigen values are linearly independent.
(b) Let p be a prime. Prove that $\left(\mathrm{Zp},+{ }^{*}\right)$ is a field. 6
(c) Show that a polynomial of degree n over a field F can have at most n roots in any extension field. 6
4. (a) Show that H is a subgroup of a group (G, .) iff $a, b \in H$ implies $a^{-1} b \in H \forall a, b \in H$. 5
(b) Prove that intersection of a family of subgroups is a subgroup of a group but the union of two subgroups may not be so.
(c) Let H be a subgroup of a finite group G. Prove that
(i) $|\mathrm{aH}|=|\mathrm{H}|=|\mathrm{Ha}| \forall \mathrm{a} \in \mathrm{G}$
(ii) $\mathrm{O}(\mathrm{H})$ divides $\mathrm{O}(\mathrm{G})$.
5. (a) If H, K are two subgroups of a group G , show that HK is a subgroup of G iff $\mathrm{HK}=\mathrm{KH}$. 7
(b) Define a normal subgroup of a group G. 2
(c) Define an ideal, a prime ideal and a principal ideal. Consider the ring of integers. For two positive integers a, b show that
(a) $+(\mathrm{b})=(\mathrm{d}), \quad \mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$
(a) . (b) $=(\mathrm{c}), \quad \mathrm{c}=\operatorname{Icm}(\mathrm{a}, \mathrm{b})$
where (x) is the principal ideal generated by $x .3+8$
6. (a) Show that in a commutative ring R with identify, a proper ideal P of R is prime iff. R / P is an integral domain.
(c) Prove that a set of n non-zero vectors $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is linearly dependent iff at least one of α_{i} is a linear combination of preceeding vectors.
7. (a) Show that $(1,-1,3,2),(1,1,0,3),(0,1,0,0)$ and $(0,0,1,0)$ forms a basis of R^{4} and express ($1,-3,4,7$) as a linear combination.
(b) Find the basis and dimension of the subspace W spanned by $(1,2,2),(3,2,1),(11,10,7)$ and $(7,6,4) .5$
(c) Define a basis of a vector space. Show that any two bases in a finite dimensional vector space have exactly same number of vectors.
8. (a) Prove that every finite dimensional vector space has a basis.
(b) If α, β, γ are linearly independent then show that $\alpha+\beta$, $\alpha-\beta, \alpha-2 \beta+\gamma$ are also so.
(c) Find a basis and dimension of the space of all skew symmetric matrices of order 3. 3
(d) Extend the following set $(1,0,1,1),(-1,-1,0,0)$, $(0,1,1,0)$ to a basis of R^{4}.
