Time: Three Hours

BACHELOR OF COMPUTER SCIENCE & ENGINEERING EXAMINATION, 2017

(1st Year, 2nd Semester)

MATHEMATICS - III

Full Marks: 100

Answer Q. No. 10 and any six questions from Q. No. 1 to 9 1. (a) Define a group. Let $G = \{a \in \mathbb{R} \mid -1 < a < 1\}$. Define $a \star b = \frac{a+b}{1+ab}$ for all $a, b \in G$. Determine whether (G,\star) is a group, where $\mathbb R$ is the set of all real numbers (b) Let $\beta = (1\ 3\ 5\ 7\ 9\ 8\ 6)(2\ 4\ 10) \in S_{10}$. What is the smallest positive integer n for which $\beta^n = \beta^{-5}$? 2. (a) Define a subgroup of a group G. Let G be a group and H be a nonempty subset of G. Show that H is a subgroup of G if and only if for all $a, b \in H$, $ab^{-1} \in H$. (b) Define a cyclic group. Let \mathbb{Q} be the set of all rational numbers. Is the group $(\mathbb{Q}, +)$ 8 cyclic? Justify your answer. 8 3. (a) Let G be a finite group and $a \in G$. Show that o(a) divides o(G). (b) Prove that every infinite cyclic group is isomorphic to the group $(\mathbb{Z}, +)$, where \mathbb{Z} is the 8 set of all integers. 4. (a) Define a ring. Let R be the set of even integers. Define addition as usual and multiplication by $a \cdot b = \frac{1}{2}ab$. Show that R is a ring. Is there an identity in R? (b) Define an *ideal* of a ring. Let I be an ideal of a ring R. Define $J = \{x \in R \mid rx \in I \text{ for all } r \in R\}.$ 8 Show that J is an ideal of R. 5. (a) Define a prime ideal of a ring. Let R be a commutative ring with identity $1 \neq 0$. Then show that an ideal P of R is prime if and only if R/P is an integral domain. (b) Define a field. Prove that the number of elements of a finite field is a power of a prime 8 number.

6. (a) Define a subspace of a vector space over a field. Let

$$W_1 = \left\{ (a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_2 = a_3 = 0 \right\}, \ W_2 = \left\{ (a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_1 = a_4 = 0 \right\}$$

be two subspaces of \mathbb{R}^4 over the field \mathbb{R} . Either prove that $W_1 \cup W_2$ is a subspace of \mathbb{R}^4 or find the smallest subspace of \mathbb{R}^4 containing W_1 and W_2 .

- (b) Define a basis of a vector space over a field. Let $\{u, v, w\}$ be a basis of a vector space V over a field \mathbb{R} . Then show that $\{u+v+w, u-v+w, -u+v+w\}$ is also a basis of V over \mathbb{R} .
- 7. (a) Let A and B be two $n \times n$ matrices over a field F. Prove that if $I_n AB$ is invertible, then $I_n BA$ is also invertible. Further show that AB and BA have the same eigenvalues.
 - (b) Define eigen values and eigen vectors of a square matrix over a field. Find eigen values and corresponding eigen vectors of the matrix A over \mathbb{R} . Also determine whether A is diagonalizable, where

$$A = \left(\begin{array}{rrr} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{array}\right)$$

8. (a) Find the nature of solutions of the following system of linear equations. Find solutions, if they exist, otherwise show that there is no solution of the system.

$$x_1 + 2x_2 - 3x_3 + 4x_4 = 2$$
$$-3x_1 + x_2 + 2x_3 + 5x_4 = 1$$

$$5x_1 + 3x_2 - 8x_3 + 3x_4 = 2$$

$$-x_1 + 5x_2 - 4x_3 + 13x_4 = 4$$

(b) Determine for which $Y = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$ the equation AX = Y has a solution for $X \in \mathbb{R}^4$, where

$$A = \left(\begin{array}{cccc} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{array}\right)$$

9. (a) Find the Jordan canonical form J of A. Find a Jordan canonical basis and a non-singular matrix Q such that $J = Q^{-1}AQ$, where

$$A = \left(\begin{array}{rrrr} 2 & -4 & 2 & 2 \\ -2 & 0 & 1 & 3 \\ -2 & -2 & 3 & 3 \\ -2 & -6 & 3 & 7 \end{array}\right)$$

Given that the characteristic polynomial of A is $(x-2)^2(x-4)^4$.

Ω

(b) Let $V = \mathbb{R}^5$ and W be a subspace of V, where

$$W = \left\{ (a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 \mid a_1 + 2a_3 + a_5 = 0, \ 2a_2 + a_4 = 0 \right\}.$$

Find the dimension and a basis of W over \mathbb{R} . Further extend this basis to a basis of V over \mathbb{R} .

10. Construct a finite field of order 25.

4