BACHELOR OF COMPUTER SC. ENGINEERING EXAMINATION, 2017
(1st Year, 1st Semester, Supplementary)
Mathematics - II
Time : Three hours
Full Marks : 100

Answer any five questions.
All symbols and notations have their usual meanings.

1. (a) Define bounded sequence.

If $x_{n}=\frac{3 n-1}{n+1}$, prove that $\left\{x_{n}\right\}$ is monotonically increasing and bounded.
(b) Prove that the sequence $\left\{x_{n}\right\}$ where
$x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots .+\frac{1}{2 n}$ is a convergent sequence.
Estimate its limit.
2. (a) State Cauchy's general principle of convergence of an infinite series. Prove that if $u_{n}>0$ and if
$\operatorname{Lt}_{n \rightarrow \infty}\left(u_{n}\right)^{\frac{1}{n}}=\rho$, then
(i) $\sum u_{n}$ converges if $\rho<1$.
(ii) diverges if $\rho>1$.
(b) Find the radius of convergence of the power series

$$
x+\frac{(2!)^{2}}{4!} x^{2}+\frac{(3!)^{2}}{6!} x^{3}+\ldots .+\frac{(n!)^{2}}{(2 n)!} x^{n}+\ldots .
$$

3. (a) Show that the function

$$
f(x, y)=\left\{\begin{array}{cc}
x y \cdot \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & x^{2}+y^{2} \neq 0 \\
0, & x=y=0
\end{array}\right.
$$

is continuous at $(0,0)$.
(b) If $v=2 \operatorname{Cos}^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ then show that

$$
x \frac{\partial v}{\partial x}+y \frac{\partial v}{\partial y}+\cot \frac{v}{2}=0
$$

4. (a) State and prove Lagrange's Mean Value theorem. 10
(b) Find the value of y for $x=0$ when $y=e^{a \sin ^{-1} x} \cdot 10$
5. (a) Prove that a bounded function $f(x)$, having a finite number of points of discontinuity on $[a, b]$ is integrable on [a,b].
(b) Prove that the function $f(x)$ defined by
$f(x)=\left\{\begin{array}{l}x, \text { when } x \text { is rational } \\ -x, \text { when } x \text { is irrational }\end{array}\right.$
is not integrable over $[a, b]$, but $|f|$ is integrable.
6. (a) Evaluate
(i) $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{2^{x}+3^{x}}{2}\right)^{1 / x}$
(ii) $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x-\tan x}{x^{3}}$
(b) Prove that $B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
7. (a) Find the common area of the cardioide

$$
r=a(1+\operatorname{Cos} \theta) \text { and the circle } r=\frac{3}{2} a .
$$

(b) Find the asymptotes of

$$
\begin{equation*}
x(x-y)^{2}-3\left(x^{2}-y^{2}\right)+8 y=0 \tag{10}
\end{equation*}
$$

