Bachelor of Civil Engg. (Evening) 5th Year Exam. 2017

Subject: Advanced Soil Mechanics

Answer Question no. 5 and any THREE from the rest

Times: Three hours

Full Marks: 100

- 1. (a) State and explain Skempton's pore pressure parameters. Deduce the expression for excess pore pressure in terms of those parameters.
 - (b) The results obtained from a series of CU tests with pore pressure measurements on a soil gave the following results: $c_{CU} = c'_{CU} = 0$, $\phi_{CU} = 15^0$, $\phi'_{CU} = 30^0$ A sample of this soil was tested under a cell pressure of 100 kN/m^2 .

Determine: (a) deviator stress at failure

- (b) pore water pressure at failure
- (c) minor principal effective stress at failure
- (d) major principal effective stress at failure
- (e) the magnitude of A_f.

10 + 15

- 2. (a) Write down Terzaghi's three dimensional consolidation equation clearly explaining the meaning of the various terms. Explain how this equation can be modified to obtain the equation for radial drainage.
 - (b) Explain the basic theory behind the working principles of sand drains.
 - (c) What do you mean by smear?
 - (d) A 5m thick clay layer drained at top and bottom has some sand drains. A uniform surcharge is applied at the top of the clay layer. Calculate the average degree of consolidation for combined vertical and radial drainage after 150 days of load application. Given $C_{vr} = C_v = 4 \text{ mm}^2/\text{min}$, $d_z = 2\text{m}$, and $r_w = 0.2\text{m}$. Assume no smear.

- 3. (a) State and explain stress path giving a neat sketch. Draw the stress paths for K_0 line, K>1 line and K=1 line.
- (b) Express the shear strength parameters (c, φ) in terms of the intercept (a) and slope (α) of K_f line in the p-q diagram. Deduce the necessary relationship.

(c) CU triaxial tests conducted on specimens of a saturated clay soil gave the following results:

Cell Pressure G ₃ (kN/m ²)	Additional axial stress $(G_1 - G_3)$ ot deviator stress at failure (kN/m^2)	Pore water pressure u at failure (kN/m²)
150	102	80
300	200	164
+50	304	264
600	405	325

Determine the effective stress strength parameters c' and ω' by the Mohr circle method and the stress point method. 5 + 7 + 13

- 4. (a) Derive the equations of static equilibrium for stresses acting on an elemental soil mass in terms of effective stresses giving a neat sketch.
 - (b) Deduce the expressions of shear strain. What do you mean by plain strain problems? Explain the mathematical interpretations. 10 + 10 + 5
- 5. Write short notes on any FIVE of the following:

5 x 5

- a) Free earth and fixed earth support anchored sheet pile walls
- b) Bishop & Morgenstern method
- c) Skempton's pore pressure parameters
- d) p q diagram
- e) Effective stress analysis and total stress analysis
- f) UU and CU test.