Ref. No.: EX/CE/5/T/401/2017 (S)

B. CIVIL ENGINEERING (EVENING) 4TH YEAR 1ST SEMESTER SUPPLEMENTARY 2017 TRANSPORTATION ENGINEERING –II

Time: 3 Hours

Full Marks: 100

(50 marks for each part)

Part I Use Separate Answer scripts for each Part Answer ALL Questions

1. Write short notes on the following -

 $4 \times 5 = 20$

- a. Moving Car Method
- b. Automatic methods of volume study
- c. Traffic volume growth factors
- d. Presentation of Accident Data
- 2. Determine the Time mean, Space mean, Design, Maximum allowable, Minimum allowable and Modal Speeds for the following observations of a NH.

 2+2+3+3+3+2

Speed Range	20 - 30	30 – 40	40 - 50	50 – 60	60 – 70	70 - 80
Frequency	25	70	90	100	90	25

3. The parking survey data collected from a 10-bay parking lot by license plate method is as shown below. Determine Overall Parking Load, Average Parking Index, Parking Volume, Average Turnover, and Average Duration of the parking lot.

5×3=15

Time	Bays										
	1	2	3	4	5	6	7	8	9	10	
0-10		0669	7469	7486	6140	3212	9777	3331	8265	8545	
10-20	8720	0669	7469	7486	6140	3212	9777	3331	5278	8545	
20-30	8720		7469	7486	6140	3212	8484	6894	8470	8545	
30-40	8720	8516	7469	7486	6140	3212	8484	6894	8470		
40-50	8720	8516	7469	7486	6712		8484	6894	8470	3856	
50-60	8720	8516	2742	3402	6712		8484	0306	6834	3856	

B.CIVIL ENGG.(EVENING) 4TH YEAR 1ST SEM. SUPPLEMENTARY 2017 (1st /2nd Semester/Repeat/Supplementary /Spl. Supplementary /Old/Annual/Bi-Annual) SUBJECT: TRANSPORTATION ENGINEERING-II

(Name in full)

PAPER ××××

Time: Two hours/ Three hours/Four hours/Six hours

Full Marks **30/100**

(45/50 marks for each part)

Use a separate Answer-Script for each part

1 OF 3 / Part - /II

No. of Question Mark:

- · Maintain neatness. Do not retain mobile phone during examination.
- Assume reasonable data if it is not supplied.
- Question no. 1 is mandatory, answer any other two questions alongwith question no. 1 • All drawings-must be drawn by pencil • Code IRC: 37-2001 will be allowed with the students to answer the questions (1)(a) Design a flexible pavement using the following data by any conventional method: 8+2=1 CBR value of subgrade = 8% CBR value of sub base = 20% CBR value for base = 85% Present traffic = 1600 vehicles per day Life of pavement = 18 years Annual growth = 8% Show the pavement section with neat sketch. $2 \times 3 = 6$ (b) Draw by pencil and subsequently label the sections of: (1) flexible pavement and (2) rigid pavement. (c) Write short notes on any one: (i) One layer system, (ii) Two layer system (2)(a) Either answer (I) and (II) or answer only (III) (I) What should be the design approaches regarding the strategies in a country like India? Discuss. (II) Discuss about any one -(1) Fixed traffic level approach and (2) Fixed standard vehicle approach" 3×3=9 (III) Give the Possible causes of following flexible pavement distress:
 - (1) Alligator cracking
 - (2) Longitudinal cracking
 - (3) Ravelling
 - (4) Ruttina
 - (5) Bleeding
 - (b) What are the differences and similarities between "Railway transportation" and "Roadway transportation"?
 - 3 What are the requirements of a pavement? (3)(a)5 During design of pavement, what are the factors which may affect the design? (b)
 - Using a 25 cm diameter rigid plate, load tests conducted on soil subgrade and over a 15 7 cm trial base course yielded 2.4 mm deflection at 1.0 and 4.0 kg/cm² respectively. Estimate the thickness of base for a wheel load of 4100 kg with a tyre pressure of 5.8 kg/cm², if permissible deflection is 2.5 mm.
- (4)(a) Using the following data find the equal deflection ESWL for a 30 cm thick pavement: (i) tyre pressure: 5 kg/cm²,
 - (ii) two single wheels carrying load: 5400 kg/each
 - (iii) Centre to centre distance of tyres: 30 cm
 - (iv) Clear spacing: 10 cm (of tyres)

(Continued in page 2)

10 +3

100

part)

Mark:

8+2=10

 $2 \times 3 = 6$

3×3=9

2×3=6

10 +3

5

B.CIVIL ENGG.(EVENING) 4TH YEAR 1ST SEM. SUPPLEMENTARY 2017 (1st /2nd Semester/Repeat/Supplementary /Spl. Supplementary /Old/Annual/Bi Annual)

SUBJECT: TRANSPORTATION ENGINEERING-II

(Name in full)

PAPER ××××

Time: Two hours/ Three hours/Four hours/Six hours-

Full Marks 30/100

(45/50 marks for each part)

Use a separate Answer-Script for each part

2 OF 3

Also work out the above problem (for 30 cm depth) by mechanistic-emperical design approach.

(4)(b) What is meant by "semi rigid pavement"?

2

(Continued in page 3)

B.CIVIL ENGG.(EVENING) 4TH YEAR 1ST SEM. SUPPLEMENTARY 2017 (1st | 2nd Semester/Repeat/Supplementary | Spl. Supplementary | Old/Annual/Bi-Annual)

SUBJECT: TRANSPORTATION ENGINEERING-II

(Name in full)

PAPER ××××

Time: Two hours/ Three hours/ Four hours/ Six hours-

Full Marks 30/100 (45/50 marks for each part)

Use a separate Answer-Script for each part

