Ref No: EX/CE/5/T/306/2017(Old)

Bachelor of Civil Engineering (Part Time) Examination 2017 (Old)

(3rd Year 2nd semester)

Waste Water Engineering

Time: Three Hours

Full Marks: 100

Use separate answer script for each part

(50 marks for each part)

Part-1

Answer Question No. 1 and any Two from the rest. Answers should be brief. Any relevant data may be assumed, if needed. Answer Question no first.

- 1. a) Define wastewater (WW) with respect to its designated use.
 - b) How is settleable solid expressed and why?
 - c) Mention two basic characteristics of an organic waste to be bio-accumulated.
 - d) What are the sources of energy and carbon for chemo heterotrophic bacteria?
 - e) Mention the product and by-products of municipal WW treatment.
 - f) Why is 5 day period chosen generally as standard period of incubation for BOD test?
 - g) Why is nutrients removal necessary sometimes from municipal WW?
 - h) Why is ThOD generally more than COD for a WW sample?
 - i) What should be the quantity of ground water infiltration to calculate design sanitary WW flow?
 - J) Define time of concentration related to calculation of design storm water runoff.

2x10=**20**

Ref No: EX/CE/5/T/306/2017(C

Bachelor of Civil Engineering (Part Time) Examination 2017 (Old)

(3rd Year 2nd semester)

Waste Water Engineering

Time: Three Hours

Full Marks: 1 ...

- 2. a) Name all the eight sub-groups of total solids, when it is classified based on size and volatility. Mention the sub-groups which are removed and/or transformed to other form in the following units of WW treatment plants (WWTP)
 - (i) primary sedimentation tank (b) primary clarifier (c) secondary clarifier (d) biological unit
 - b) (i) What is the main importance of odour as a WW characteristic (WWC)?
 - (ii) 'Turbidity is only a qualitative assessment of suspended solid'-explain with an example.
 - (iii) Which physical WWC is most responsible for septicity of a tropical water body?
 - (iv) What is RSH or thioalcohol?
 - (v) What is WW black as seen in open sewers?

10+5 =:

- 3. a) If K= BOD rate constant base e, K₂₀=0.13/day, K₃₀=0.2/day, find the temperature coefficient.
 - b) The following observations were made on a 2% dilution of WW:
 - (i) DO of aerated water used for dilution = 5.0 mg/L
 - (ii) DO of diluted sample after 5 days incubation = 1.8 mg/L
- (iii) DO of undiluted sample = 0.6 mg/l
- K (base e) may be assumed as 0.35/day. Calculate BOD_u.
- c) Why are dilutions and seeding done in BOD test? What are seed mixture and sample mixtures in relation to BOD test? 3+6+6=15

2017(0

Ref No: EX/CE/5/T/306/2017(Old)

Bachelor of Civil Engineering (Part Time) Examination 2017 (Old)

(3rd Year 2nd semester)

Waste Water Engineering

arks: ¹he: Three Hours

Full Marks: 100

(50 marks for each part)

lention

WW

- a) Following database for analyzing an existing sewer are given:
- (i) Ultimate peak flow = 500 lps (ii) Present peak flow 400 lps (iii) Dia = 1050mm (iv) n = n' = 0.013
- (v) d/D at present peak flow = 0.75

Calculate Q, V, S, and v at ultimate peak flow and v at present peak flow. Following table may be needed:

·d/D	v/V	q/Q
1.000	1.000	1.000
0.900	1.124	1.066
0.800	1.140	0.988
0.700	1.120	0.838
0.600	1.072	0.671
0.500	1.000	0.500
0.400	0.902	0.337

10+5 =1

All the notations used in this problem have usual meanings.

.6 mg/L

- b) Explain the followings with respect the table given in Q4 (a):
- (i) at d/D = 0.9, q/Q > 1.0 (ii) d/D should be 0.8 and (iii) d/D should not be less than 0.5.

9+6 = 15

า

6 = 15

B.E. Civil Engineering (Part Time) 3rd YEAR 2nd Semester Examination, 2017 (OLD) (1st/2nd Semester / Repeat / Supplementary / Annual / Biannual) SUBJECT: WASTEWATER ENGINEERING

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 10 (50 marks for each part

Use a separate Answer-Script for each part No. of Part-II Question Marks Answer Question-1 and 2 and any two from the rest Q.1) a) Fill in the blanks with appropriate word(s): a) The treatment units where removal of pollutants occurs through 6*1=6 physical forces are called ----b) Small screen has opening size smaller than ----- mm. c) Removal of heavy metals usually occurs in the----- treatment units. d) In activated sludge process the value of sludge age varies in the range of ----days. e) Sludge Volume Index is expressed in the unit of f) Oily matters when combine with detergent form-----Q.2)a) What are the significances behind the treatment of wastewater? 5 b) What are the adverse effects that will be caused if a grit chamber is not provided in the sewage treatment plant? 4 c) Differentiate between Hydraulic Retention Time (HRT) and Mean 3 Cell Residence Time (MCRT). d) What do you mean by settleability of sludge? How it is expressed (3+3)and measured? Q.3)a) What are the major sources of oily and greasy substances in a municipal sewage? Why the oily and greasy substances are necessary (3+4)to be removed before entering into further treatment units? b) Design a rectangular skimming tank on the basis of a peak design wet weather flow of 0.675m³/sec. Assume a minimum detention period of 4 6 min and the velocity of rise of air bubble of 0.23m/min.

Tir

Q

Q.

 F_0

6/2017

LD)

rks 10(h part)

____ Marks

6*1=6

=

4 3

(3+3)

(3+4)

6

B.E. Civil Engineering (Part Time) 3rd YEAR 2nd Semester Examination, 2017 (OLD) (1st/ 2nd Semester / Repeat / Supplementary / Annual / Biannual) SUBJECT: WASTEWATER ENGINEERING

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 100 (50 marks for each part)

No. of Question	Part-II	
Q.4) a) A township having a population of 70,000 persons is producing domestic sewage @ 125 lpcd having an average 223 mg/l of BOD ₅ . Design a high rate single stage trickling filter for treating the sewage. Assume that the primary clarifier removes 36% of BOD. Given: i) Organic Loading rate = 6198 Kg/hec-m/day ii) Surface Loading rate = 127 million-litre/hec/day (including recirculated sewage) iii) Recirculation Ratio = 1.20		13
	iv) Desired BOD ₅ in the final effluent $= 30$ mg/l.	
Q.5) a)	a) "Flocculation capacity of biomass is minimum during exponential phase of biomass growth"- Justify this statement.	5
b)	b) Design a secondary clarifier for an activated sludge process for an average flow of 22 million-litre per day (MLD) and peak flow of 41 MLD, operating with a MLSS concentration of 3150 mg/L. Considering a circular tank find out the dimensions. Exercise the necessary checks.	8