Ref. No.: EX/CE/5/T/207/2017 (old) Examination: B.E. CIVIL ENGINEERING (Part Time) 2ndYear, 2ndSemester (old), 2017 Subject: Theory of Structures – AI Time: Three (3) Hours Full Marks: 100 Part I ## Use separate answerscript for each part Answer Any Two (2) - 1 (a) Using Beam Column theory obtain the expression for calculation of critical buckling load for a simply supported column.(15) - (b) A slender pin ended mild steel column is 4 m long and has diameter 80 mm. (i) Find the Euler's buckling load for this column with $E = 2 \times 10^{11} \text{ N/m}^2$. How will the above load change if (a) Mid-point of the column is restrained against any lateral deflection (b) Mid-point of the column is restrained against deflection as well as rotation. (10) - 2. (a) Obtain the expression for critical buckling load for a column with one end fixed and the other end hinged using the moment equilibrium equation. (15) - (b) Plot the notional ILD using Muller Breslau's principle for the given functions shown in figure 1. (10) - (a) State Muller Breslau's principle for obtaining the ILD for a function of a beam. Prove the principle using 'Principle of Virtual work'. - (b) Obtain the maximum bending moment at point 'C' on the beam as shown in figure 2 for the train of rolling load. (10) - (c) Calculate the absolute maximum bending moment for the beam due to the train of rolling load shown in figure 3 and identify the position of the load train on the beam. (10) Form A: Paper-setting Blank Page 1 of 2 Ref. No. Ex/CE/5/T/207/2017(Old)B.C.E.(Evening) 2nd Year 2nd Semester [OLD]..... EXAMINATION, 2017 SUBJECT Theory of Structures - AI...... Full Marks 100 (50 marks for each part) Time: Three hours ## Use a separate Answer-Script for each part | No. of | | | |-----------|---|-----------------| | Questions | PART II | Marks | | | Answer ANY TWO questions | | | 1. | a) Derive the expression to find the deflection at any location along the span and the expression of bending stress at any point on the cross-section of a beam subjected to unsymmetrical bending.b) State 'theorem of three moments' and prove it. | [15+10
= 25] | | 2. | A cantilever beam over a span of 1.5m is carrying a concentrated load of magnitude 10N acting vertically downward at the free-end of the beam. The Z-shaped cross-section of the beam (shown in fig Q2) has the following dimensions: width = 80mm., depth = 160mm., thickness of flange and web = 8mm. Calculate a) the angle of inclination of principal axes and principal moments of inertia, b) the net vertical and horizontal deflections at free end of the beam if E = 2x10 ⁵ N/mm2 and c) the stress developed at points P1 and P2 as shown in Fig.Q2 near the fixed end. Direction of Load 8 mm 160 mm 8 mm 8 mm | [25] | | | y ▼
Fig. Q2 | | | | (Contd. to page 2) | | Form A: Paper-setting Blank Page 2 of 2 Ref. No. Ex/CE/5/T/207/2017(Old)B.C.E.(Evening) 2nd Year 2nd Semester [OLD]..... EXAMINATION, 2017 SUBJECT Theory of Structures - AI...... Full Marks 100 (50 marks for each part) Time: Three hours ## Use a separate Answer-Script for each part | No. of
Questions | PART II | Marks | |---------------------|--|-------| | X 440010110 | (Contd. from page 1) | W. | | 3. | Analyse the continuous beam ABCD as shown in Fig.Q3 by using 'Three Moment Theorem' and calculate the support reactions. Also draw the bending moment diagram and shear force diagram for this beam. | [25] | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | === END === | | | | | | | | | |